Skip to main content

Advertisement

Log in

Tailoring surface properties of carbon nanofibers via oxidation and its influence on dental pulp stem cell viability of PCL/CNF composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of oxidation time on the surface chemical and morphological properties of carbon nanofibers (CNFs) and their suitability for use as a reinforcement agent in the development of bone scaffolds was assessed. The CNFs were modified using a 3:1 v/v mixture of concentrated sulfuric (H2SO4) and nitric acid (HNO3) for different periods of time. Several analytical techniques were used to characterize the oxidized CNF surface properties. Photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR) showed the creation of carboxylic groups due to the acid treatments. Scanning electron microscopy images revealed differences in the nanofibers before and after acid treatment. The relationship between the CNF crystals and their defects when varying the oxidation time were determined by Raman spectroscopy. The CNF FTIR results, contact angle measurements, and dispersion tests showed the formation of carboxylic groups due to the oxidative treatment. The results confirmed the presence of microstructures with defects, as well as chemically active functional surface groups, such as carboxyls and hydroxyls. Furthermore, a composite was prepared using polycaprolactone (PCL) as a matrix and the CNF as the reinforcement. The storage module of the oxidized CNFs was improved with respect to the nonoxidized CNFs. Furthermore, the scaffolds of PCL with oxidized CNFs enhanced the cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114. https://doi.org/10.1016/j.addr.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VK, Fadeel B, Castranova V (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 121(2):192–204. https://doi.org/10.1016/j.pharmthera.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Panek A, Fraczek-Szczypta A, Dlugon E, Nocun M, Paluszkiewicz C, Blazewicz M (2018) Genotoxicity study of carbon nanoforms using a comet assay. Acta Phys Pol A 133(2):306–308

    Article  CAS  Google Scholar 

  5. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  6. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870. https://doi.org/10.1063/1.126500

    Article  CAS  Google Scholar 

  7. Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769. https://doi.org/10.1063/1.126500

    Article  CAS  Google Scholar 

  8. Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibres. Chem-Eur J 8:1151–1162. https://doi.org/10.1002/1521-3765(20020301)8:5%3c1151:AID-CHEM1151%3e3.0.CO;2-%23

    Article  CAS  PubMed  Google Scholar 

  9. Lozano K, Bonilla Rios J, Barrera E (2001) A study on nanofiber-reinforced thermoplastic composites (II): investigation of the mixing rheology and conduction properties. J Appl Polym Sci 80:1162–1172. https://doi.org/10.1002/app.1200

    Article  CAS  Google Scholar 

  10. Yang L, Zhang L, Webster TJ (2011) Carbon nanostructures for orthopedic medical applications. Nanomedicine 6:1231–1244. https://doi.org/10.2217/nnm.11.107

    Article  CAS  PubMed  Google Scholar 

  11. Ormsby R, McNally T, Mitchell C, Dunne N (2010) Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. J. Mater. Sci. Mater. Med. 21:2287–2292. https://doi.org/10.1016/j.jmbbm.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Darmstadt H, Sümmchen L, Ting JM, Roland U, Kaliaguine S, Roy C (1997) Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers. Carbon 35:1581–1585. https://doi.org/10.1016/S0008-6223(97)00116-4

    Article  CAS  Google Scholar 

  13. Serp P, Figueiredo J, Bertrand P, Issi J (1998) Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon 36:1791–1799. https://doi.org/10.1016/S0008-6223(99)00055-X

    Article  CAS  Google Scholar 

  14. Toebes ML, Van Heeswijk JMP, Bitter JH, Jos van Dillen A, de Jong KP (2004) The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon 42:307–315. https://doi.org/10.1016/j.carbon.2003.10.036

    Article  CAS  Google Scholar 

  15. Chastain SR, Kundu AK, Dhar S, Calvert JW, Putnam AJ (2006) Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res Part A 78:73–85. https://doi.org/10.1002/jbm.a.30686

    Article  CAS  Google Scholar 

  16. Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325. https://doi.org/10.1016/j.biomaterials.2006.08.042

    Article  CAS  PubMed  Google Scholar 

  17. Choi SH, Park TG (2002) Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 13:1163–1173. https://doi.org/10.1163/156856202320813864

    Article  CAS  PubMed  Google Scholar 

  18. Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Polymers for biodegradable medical devices: II. Hydroxybutyrate hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 8:289–295. https://doi.org/10.1016/0142-9612(87)90117-7

    Article  CAS  PubMed  Google Scholar 

  19. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  20. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res Int. https://doi.org/10.1155/2015/729076

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sanchez-Garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Comp Sci Technol 70(7):1095–1105. https://doi.org/10.1016/j.compscitech.2010.02.015

    Article  CAS  Google Scholar 

  22. Martin-Del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S et al (2016) Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce: in vivo bone regeneration in critical sized defects. Biomaterials Science. 4:1596–1604. https://doi.org/10.1039/c6bm00459h

    Article  CAS  PubMed  Google Scholar 

  23. Flores-Cedillo ML, Alvarado-Estrada NK, Pozos-Guillén AJ, Murguía-Ibarra JS, Vidal MA, Cervantes-Uc JM, Rosales-Ibáñez R, Cauich-Rodríguez JV (2016) Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med 27:35. https://doi.org/10.1007/s10856-015-5640-y

    Article  CAS  PubMed  Google Scholar 

  24. Rincón E, Ros A, Claramut R, Arranz F (2004) Caracterización Mecánica del Sistema óseo. Vol II año, Table 4–3, page 18, Tesis, Escuela Politécnica Superior, España. https://revistas.uax.es/index.php/tec_des/article/view/616/572

  25. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  26. Rasheed A, Howe JY, Dadmun MD, Britt PF (2007) The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45:1072–1080. https://doi.org/10.1016/j.carbon.2006.12.010

    Article  CAS  Google Scholar 

  27. Wepasnick KA, Smith BA, Schrote KE et al (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1):24–36. https://doi.org/10.1016/j.carbon.2010.08.034

    Article  CAS  Google Scholar 

  28. Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Composites Science and Technology 63:1617–1628. https://doi.org/10.1016/S0266-3538(03)00071-X

    Article  CAS  Google Scholar 

  29. Zhu Y, Bakis CE, Adair JH (2012) Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. CARBON 5 0. https://doi.org/10.1016/j.carbon.2011.11.001

    Article  Google Scholar 

  30. Lee JH, Rhee KY, Lee JH (2010) Effects of moisture absorption and surface modification using 3-aminopropyltriethoxysilane on the tensile and fracture characteristics of MWCNT/epoxy nanocomposites. Appl Surf Sci 256:7658–7667. https://doi.org/10.1016/j.apsusc.2010.06.023

    Article  CAS  Google Scholar 

  31. Sellitti C, Koenig JL, Ishida H (1990) Surface characterization of graphitized carbon fibers by attenuated total reflection Fourier transform infrared spectroscopy. Carbon 28:221–228. https://doi.org/10.1016/0008-6223(90)90116-G

    Article  CAS  Google Scholar 

  32. Shieh YT, Liu GL, Wu HH, Lee CC (1907) Effects of polarity and PH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45:1880–1890. https://doi.org/10.1016/j.carbon.2007.04.028

    Article  CAS  Google Scholar 

  33. Stobinskia L, Lesiaka B, Kövérc L, Tóthc J, Biniakd S, Trykowskid G, Judeke J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloy Compd 501:77–84. https://doi.org/10.1016/j.jallcom.2010.04.032

    Article  CAS  Google Scholar 

  34. Chen J, Chen Q, Ma Q (2012) Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J Colloid Interfaces Sci 370:32–38. https://doi.org/10.1016/j.jcis.2011.12.073

    Article  CAS  Google Scholar 

  35. Klein KL, Melechko AV, McKnight TE, Retterer ST, Rack PD, Fowlkes JD, Joy DC, Simpson ML (2008) Surface characterization and functionalization of carbon nanofibers. J Appl Phys 103:061301. https://doi.org/10.1063/1.2840049

    Article  CAS  Google Scholar 

  36. Zhao Z, Yanga Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481. https://doi.org/10.1016/j.apsusc.2013.03.119

    Article  CAS  Google Scholar 

  37. Klein KL et al (2008) Surface characterization and functionalization of carbon nanofibers. J Appl Phys 103(6):061301. https://doi.org/10.1063/1.2840049

    Article  CAS  Google Scholar 

Download references

Funding

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) Universidad Nacional Autónoma de México, Dirección General de Universidades e Investigación (ES). IA209417-IA207420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hernández-Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Supplementary material 2 (TIFF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valadez-González, A., Rosales-Ibáñez, R., Rodríguez-Navarrete, A. et al. Tailoring surface properties of carbon nanofibers via oxidation and its influence on dental pulp stem cell viability of PCL/CNF composites. Polym. Bull. 78, 695–711 (2021). https://doi.org/10.1007/s00289-020-03127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03127-1

Keywords

Navigation