Skip to main content
Log in

Poly(vinyl amine) microparticles derived from N-Vinylformamide and their versatile use

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cationic polymers with primary amine groups that can easily be functionalized or coupled with substrates by complexation or hydrogen bonding are especially advantageous in preparing particles for biomedical applications. Poly(vinyl amine) (PVAm) is a cationic polyelectrolyte containing the highest number of primary amine groups among any other polymers. Here, we introduce a general method in synthesizing PVAm microparticles via a surfactant-free water-in-oil emulsion technique using cyclohexane as the oil phase and aqueous PVAm solution as the dispersed phase. PVAm particles were prepared to employ two different bifunctional chemical crosslinkers, divinyl sulfone (DVS) and poly(ethylene glycol) diglycidyl ether (PEGGE). The prepared particles were further treated with HCl to protonate the amine groups of PVAm within particles. The effect of crosslinker types and pH on the hydrolytic degradation of PVAm particles were also investigated at three different solution pHs, 5.4, 7.4, and 9, to simulate the skin, blood, and intestinal pH environments, respectively. The blood compatibility of the PVAm particles was evaluated by in vitro hemolysis and blood clotting assays. Furthermore, antifungal and antibacterial efficacy of PVAm-based particles and their protonated forms were tested against C. albicans yeast and E. coli, S. aureus, B. subtilis, and P. aeruginosa bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamamoto K, Imamura Y, Nagatomo E et al (2003) Synthesis and functionalities of poly(N-vinylalkylamide). XIV. Polyvinylamine produced by hydrolysis of poly(N-vinylformamide) and its functionalization. J Appl Polym Sci 89:1277–1283. https://doi.org/10.1002/app.12230

    Article  CAS  Google Scholar 

  2. Pinschmidt RK (2010) Polyvinylamine at last. J Polym Sci Part A Polym Chem 48:2257–2283. https://doi.org/10.1002/pola.23992

    Article  CAS  Google Scholar 

  3. Martel B, Morcellet M (1995) Cyclodextrin-poly(vinylamine) systems—II Catalytic hydrolysis of p-nitrophenyl acetate. Eur Polym J 31:1089–1093

    Article  CAS  Google Scholar 

  4. Illergård J, Römling U, Wågberg L, Ek M (2012) Biointeractive antibacterial fibres using polyelectrolyte multilayer modification. Cellulose 19:1731–1741. https://doi.org/10.1007/s10570-012-9742-0

    Article  CAS  Google Scholar 

  5. Seifert S, Simon F, Baumann G et al (2011) Adsorption of poly(vinyl formamide- co -vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces. Langmuir 27:14279–14289. https://doi.org/10.1021/la203479n

    Article  CAS  PubMed  Google Scholar 

  6. Hollertz R, Durán VL, Larsson PA, Wågberg L (2017) Chemically modified cellulose micro- and nanofibrils as paper-strength additives. Cellulose 24:3883–3899. https://doi.org/10.1007/s10570-017-1387-6

    Article  CAS  Google Scholar 

  7. Huang Y, Du J, Zhang Y et al (2016) Batch process of polymer-enhanced ultrafiltration to recover mercury (II) from wastewater. J Memb Sci 514:229–240. https://doi.org/10.1016/j.memsci.2016.04.060

    Article  CAS  Google Scholar 

  8. Casadei R, Venturi D, Baschetti MG et al (2019) Polyvinylamine membranes containing graphene-based nanofillers for carbon capture applications. Membranes (Basel) 9:119. https://doi.org/10.3390/membranes9090119

    Article  CAS  PubMed Central  Google Scholar 

  9. Dréan M, Debuigne A, Goncalves C et al (2017) Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection. Biomacromol 18:440–451. https://doi.org/10.1021/acs.biomac.6b01526

    Article  CAS  Google Scholar 

  10. Khondee S, Yakovleva T, Berkland C (2010) Low charge polyvinylamine nanogels offer sustained, low-level gene expression. J Appl Polym Sci 118:1921–1932. https://doi.org/10.1002/app.32460

    Article  CAS  Google Scholar 

  11. Chen Y, Sun P (2019) pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers (Basel) 11:285. https://doi.org/10.3390/polym11020285

    Article  CAS  Google Scholar 

  12. Henschen J, Larsson PA, Illergård J et al (2017) Bacterial adhesion to polyvinylamine-modified nanocellulose films. Colloids Surfaces B Biointerfaces 151:224–231. https://doi.org/10.1016/j.colsurfb.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  13. Chen C, Petterson T, Illergård J et al (2019) Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces. Biomacromol 20:2075–2083. https://doi.org/10.1021/acs.biomac.9b00297

    Article  CAS  Google Scholar 

  14. Marini M, Bondi M, Iseppi R et al (2007) Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol–gel process. Eur Polym J 43:3621–3628

    Article  CAS  Google Scholar 

  15. Yang Y, Cai Z, Huang Z et al (2018) Antimicrobial cationic polymers: From structural design to functional control. Polym J 50:33–44. https://doi.org/10.1038/pj.2017.72

    Article  CAS  Google Scholar 

  16. Palermo EF, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromol 10:1416–1428. https://doi.org/10.1021/bm900044x

    Article  CAS  Google Scholar 

  17. Chen Z, Lv Z, Sun Y et al (2020) Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 8:2951–2973. https://doi.org/10.1039/c9tb02271f

    Article  CAS  PubMed  Google Scholar 

  18. Thaiboonrod S, Berkland C, Milani AH et al (2013) Poly(vinylamine) microgels: PH-responsive particles with high primary amine contents. Soft Matter 9:3920–3930. https://doi.org/10.1039/c3sm27728c

    Article  CAS  Google Scholar 

  19. Thaiboonrod S, Milani AH, Saunders BR (2014) Doubly crosslinked poly(vinyl amine) microgels: Hydrogels of covalently inter-linked cationic microgel particles. J Mater Chem B 2:110–119. https://doi.org/10.1039/c3tb21579b

    Article  CAS  PubMed  Google Scholar 

  20. McCann J, Behrendt JM, Yan J et al (2015) Poly(vinylamine) microgel-dextran composite hydrogels: Characterisation; properties and pH-triggered degradation. J Colloid Interface Sci 449:21–30. https://doi.org/10.1016/j.jcis.2014.09.041

    Article  CAS  PubMed  Google Scholar 

  21. Shi L, Berkland C (2007) Acid-labile polyvinylamine micro- and nanogel capsules. Macromolecules 40:4635–4643. https://doi.org/10.1021/ma070443o

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonnefond A, Pereira Gomes C, de la Cal JC, Leiza JR (2017) Surfactant-free poly(methyl methacrylate)/poly(vinylamine) (PMMA/PVAm) amphiphilic core-shell polymer particles. Colloid Polym Sci 295:135–144. https://doi.org/10.1007/s00396-016-3985-5

    Article  CAS  Google Scholar 

  23. Gu L, Zhu S, Hrymak AN, Pelton RH (2001) Kinetics and modeling of free radical polymerization of N-vinylformamide. Polymer (Guildf) 42:3077–3086. https://doi.org/10.1016/S0032-3861(00)00654-6

    Article  CAS  Google Scholar 

  24. Gu L, Zhu S, Hrymak AN (2002) Acidic and basic hydrolysis of poly(N-vinylformamide). J Appl Polym Sci 86:3412–3419. https://doi.org/10.1002/app.11364

    Article  CAS  Google Scholar 

  25. Horikoshi S, Akao Y, Ogura T et al (2010) On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres. Colloids Surfaces A Physicochem Eng Asp 372:55–60. https://doi.org/10.1016/j.colsurfa.2010.09.036

    Article  CAS  Google Scholar 

  26. Can M, Ayyala RS, Sahiner N (2019) Crosslinked poly(Lactose) microgels and nanogels for biomedical applications. J Colloid Interface Sci 553:805–812. https://doi.org/10.1016/j.jcis.2019.06.078

    Article  CAS  PubMed  Google Scholar 

  27. Reynolds DD, Kenyon WO (1947) The Preparation of Polyvinylamine, Polyvinylamine Salts, and Related Nitrogenous Resins

  28. Dawson DJ, Gless RD, Wingard RE (1976) Poly(vinylamine hydrochloride). Synthesis and Utilization for the Preparation of Water-Soluble Polymeric Dyes. J Am Chem Soc 98:5996–6000. https://doi.org/10.1021/ja00435a036

    Article  CAS  Google Scholar 

  29. Tanaka H, Senju R (1976) Preparation of polyvinylamine by the Hoffmann degradation of polyacrylamide. Bull Chem Soc Jpn 49:2821–2823

    Article  CAS  Google Scholar 

  30. Yatabe R, Onodera T, Toko K (2013) Highly sensitive detection of 2,4,6-trinitrotoluene(TNT) using poly(vinylamine-co-N-vinylformamide)based surface plasmon resonance (SPR) immunosensor. Sensors Mater 25:45–56

    CAS  Google Scholar 

  31. Pham HQ, Marks MJ (2005) Epoxy Resins. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

  32. Demirci S, Sahiner N (2014) PEI-based ionic liquid colloids for versatile use: Biomedical and environmental applications. J Mol Liq 194:85–92. https://doi.org/10.1016/j.molliq.2014.01.015

    Article  CAS  Google Scholar 

  33. Sahiner N, Demirci S (2016) Poly ionic liquid cryogel of polyethyleneimine: Synthesis, characterization, and testing in absorption studies. J Appl Polym Sci. https://doi.org/10.1002/app.43478

    Article  Google Scholar 

  34. Pei Y, Zhao L, Du G et al (2016) Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide. Petroleum 2:399–407. https://doi.org/10.1016/j.petlm.2016.08.006

    Article  Google Scholar 

  35. Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399:2503–2509. https://doi.org/10.1007/s00216-010-4622-7

    Article  CAS  PubMed  Google Scholar 

  36. Pastor-Pérez L, Chen Y, Shen Z et al (2007) Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: Polymer architectures and pH-effects. Macromol Rapid Commun 28:1404–1409. https://doi.org/10.1002/marc.200700190

    Article  CAS  Google Scholar 

  37. Sütekin SD, Demirci S, Kurt SB et al (2021) Tunable fluorescent and antimicrobial properties of poly(vinyl amine) affected by the acidic or basic hydrolysis of poly(N-vinylformamide). J Appl Polym Sci 51234:1–16. https://doi.org/10.1002/app.51234

    Article  CAS  Google Scholar 

  38. Bazan GC, Miao YJ, Renak ML, Sun BJ (1996) Fluorescence quantum yield of oly(p-phenylenevinylene) prepared via the paracyclophene route: Effect of chain length and interchain contacts. J Am Chem Soc 118:2618–2624. https://doi.org/10.1021/ja953716g

    Article  CAS  Google Scholar 

  39. Maity S, Shyamal M, Das D et al (2018) Proton triggered emission and selective sensing of 2,4,6-trinitrophenol using a fluorescent hydrosol of 2-phenylquinoline. New J Chem 42:1879–1891. https://doi.org/10.1039/c7nj03861e

    Article  CAS  Google Scholar 

  40. Sailema-Palate GP, Vidaurre A, Campillo-Fernández AJ, Castilla-Cortázar I (2016) A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polym Degrad Stab 130:118–125. https://doi.org/10.1016/j.polymdegradstab.2016.06.005

    Article  CAS  Google Scholar 

  41. Drozdov AD, Declaville Christiansen J (2015) Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. J Chem Phys. https://doi.org/10.1063/1.4914924

    Article  PubMed  Google Scholar 

  42. de la Harpe KM, Kondiah PPD, Choonara YE et al (2019) The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 8:1209. https://doi.org/10.3390/cells8101209

    Article  CAS  PubMed Central  Google Scholar 

  43. Klajnert B, Pikala S, Bryszewska M (2010) Haemolytic activity of polyamidoamine dendrimers and the protective role of human serum albumin. Proc R Soc A Math Phys Eng Sci 466:1527–1534. https://doi.org/10.1098/rspa.2009.0050

    Article  CAS  Google Scholar 

  44. Palermo EF, Sovadinova I, Kuroda K (2009) Structural Determinants of Antimicrobial Activity and Biocompatibility in Membrane-Disrupting Methacrylamide Random Copolymers. Biomacromol 10:3098–3107. https://doi.org/10.1021/bm900784x

    Article  CAS  Google Scholar 

  45. Ilker MF, Nüsslein K, Tew GN, Coughlin EB (2004) Tuning the Hemolytic and Antibacterial Activities of Amphiphilic Polynorbornene Derivatives. J Am Chem Soc 126:15870–15875. https://doi.org/10.1021/ja045664d

    Article  CAS  PubMed  Google Scholar 

  46. Carmona-Ribeiro A, de Melo CL (2013) Cationic Antimicrobial Polymers and Their Assemblies. Int J Mol Sci 14:9906–9946. https://doi.org/10.3390/ijms14059906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kennedy DC, Orts-Gil G, Lai C-H et al (2014) Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J Nanobiotechnology 12:59. https://doi.org/10.1186/s12951-014-0059-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leigue L, Montiani-Ferreira F, Moore BA (2016) Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species. Open Vet J 6:215. https://doi.org/10.4314/ovj.v6i3.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palermo EF, Lee D-K, Ramamoorthy A, Kuroda K (2011) Role of Cationic Group Structure in Membrane Binding and Disruption by Amphiphilic Copolymers. J Phys Chem B 115:366–375. https://doi.org/10.1021/jp1083357

    Article  CAS  PubMed  Google Scholar 

  50. Helmy S, Mohamed SS, Mahmoud SS, Talaat M (2015) Preparation and Characterization of DMPC Liposomal-Gentamicin; Antibacterial Time-Kill Study on Escherichia coli ATCC 8739. Int J Innov Sci Eng Technol 3:221–224

    Google Scholar 

  51. Leite AM, Lima EDO, De Souza EL et al (2007) Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev Bras Ciencias Farm J Pharm Sci 43:121–126. https://doi.org/10.1590/S1516-93322007000100015

    Article  CAS  Google Scholar 

  52. Lu M, Yu C, Cui X et al (2018) Gentamicin synergises with azoles against drug-resistant Candida albicans. Int J Antimicrob Agents 51:107–114. https://doi.org/10.1016/j.ijantimicag.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  53. Adimpong DB, Sørensen KI, Thorsen L et al (2012) Antimicrobial susceptibility of bacillus strains isolated from primary starters for african traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl Environ Microbiol 78:7903–7914. https://doi.org/10.1128/AEM.00730-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Machado I, Graça J, Lopes H et al (2013) Antimicrobial Pressure of Ciprofloxacin and Gentamicin on Biofilm Development by an Endoscope-Isolated Pseudomonas aeruginosa. ISRN Biotechnol 2013:1–10. https://doi.org/10.5402/2013/178646

    Article  CAS  Google Scholar 

  55. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646. https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  56. Westman E-H, Ek M, Enarsson L-E, Wågberg L (2009) Assessment of Antibacterial Properties of Polyvinylamine (PVAm) with Different Charge Densities and Hydrophobic Modifications. Biomacromol 10:1478–1483. https://doi.org/10.1021/bm900088r

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5864 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Sütekin, S.D., Kurt, S.B. et al. Poly(vinyl amine) microparticles derived from N-Vinylformamide and their versatile use. Polym. Bull. 79, 7729–7751 (2022). https://doi.org/10.1007/s00289-021-03874-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03874-9

Keywords

Navigation