Skip to main content

Advertisement

Log in

Performance of various fillers in adhesives applications: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Adhesives, which also comprise of terms like bonding agents, glues and gums, are substances which possess the ability to attach to various substrates and hence can be used to join materials. They find use for bonding of various substrates such as wood, metals, plastics and find applications in automotive, construction sectors, electrical or thermal conductivity applications, and dentistry among others. Adhesives are mainly composed of polymers and different additives, of which, one is fillers. Fillers are solid substances which are insoluble in the adhesive, and they are incorporated in adhesives to reduce cost, modify mechanical properties, increase viscosity, improve electrical and/or thermal conductivity, obtain better adhesion, etc. Some types of fillers utilized are bio-based (cellulose nanoparticles, tree bark powders); carbon-based (carbon black, carbon nanotubes, diamond, graphene); ceramics (aluminium oxide, boron nitride, iron carbide, silicon carbide); metallic (aluminium, aluminium oxide, copper, silver, titanium dioxide); silicon-based (layered silicate, silica); or hybrid (consisting of more than one type of filler). Both the type and the amount of filler added will affect the properties of the adhesive. Several adhesives having diverse uses have been considered in this study. The paper reviews in detail the effect of a number of fillers on the properties of the different adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Dinte E, Sylvester B (2018) Adhesives: Applications and Recent Advances. In: Applied Adhesive Bonding in Science and Technology. InTech. https://doi.org/10.5772/intechopen.71854

  2. Gierenz G, Karmann W (2001) Adhesives and adhesive tapes. Adhesives. https://doi.org/10.1002/9783527612802.ch01

    Article  Google Scholar 

  3. Kinloch AJ (1987) Adhesion and adhesives. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  4. Dunn DJ (2003) Adhesives and sealants: technology, applications and markets

  5. Sellers T, Miller GD, Smith W (2005) Tool wear properties of five extender/fillers in adhesive mixes for plywood. For Prod J 55(3):27–31

    CAS  Google Scholar 

  6. Cao L, Zhou X, Du G (2020) Wood Adhesive Fillers Used during the Manufacture of Wood Panel Products. https://doi.org/10.5772/intechopen.91280

  7. Skeist I (1990) Handbook of adhesives. Springer, US, Boston, MA

    Book  Google Scholar 

  8. Réh R, Krišák Ľ, Sedliačik J et al (2021) Utilization of birch bark as an eco-friendly filler in urea-formaldehyde adhesives for plywood manufacturing. Polymers 13:1–21. https://doi.org/10.3390/polym13040511

    Article  CAS  Google Scholar 

  9. Hýsek Š, Šedivka P, Böhm M et al (2018) Recycled PU in wood glue. Bioresources 13:2592–2601. https://doi.org/10.15376/biores.13.2.2592-2601

    Article  CAS  Google Scholar 

  10. Jiang W, Tomppo L, Pakarinen T et al (2018) Nanocellulose in adhesives. BioResources 13:2283–2292. https://doi.org/10.15376/biores.13.2.2283-2292

    Article  CAS  Google Scholar 

  11. Ong HR, Khan MR, Yousuf A et al (2015) Effect of waste rubber powder as filler for plywood application. Pol J Chem Technol 17:41–47. https://doi.org/10.1515/pjct-2015-0007

    Article  CAS  Google Scholar 

  12. Mamiński M, Wiecław-Midor AM, Parzuchowski PG (2020) The effect of silica-filler on polyurethane adhesives based on renewable resource for wood bonding. Polymers. https://doi.org/10.3390/POLYM12102177

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mohsen RM (1992) Effect of calcium carbonate filler on polyvinyl acetate emulsion as wood adhesive. Pigm Resin Technol 21:10–11. https://doi.org/10.1108/eb042981

    Article  CAS  Google Scholar 

  14. Qiao L, Easteal AJ, Bolt CJ et al (1999) The effects of filler materials on poly(vinyl acetate) emulsion wood adhesives. Pigm Resin Technol 28:326–330. https://doi.org/10.1108/03699429910302300

    Article  CAS  Google Scholar 

  15. Dunky M (2003) Handbook of adhesive technology. Third Edition 70. https://doi.org/10.1201/9780203912225.ch47

  16. Grøstad K, Pedersen A (2010) Emulsion polymer isocyanates as wood adhesive: a review. J Adhes Sci Technol 24:1357–1381. https://doi.org/10.1163/016942410X500981

    Article  CAS  Google Scholar 

  17. Bockel S, Harling S, Konnerth J et al (2020) Modifying elastic modulus of two-component polyurethane adhesive for structural hardwood bonding. J Wood Sci. https://doi.org/10.1186/s10086-020-01917-9

    Article  Google Scholar 

  18. Zhang R, Jin X, Wen X et al (2018) Alumina nanoparticle modified phenol-formaldehyde resin as a wood adhesive. Int J Adhes Adhes 81:79–82. https://doi.org/10.1016/j.ijadhadh.2017.11.013

    Article  CAS  Google Scholar 

  19. Kumar A, Gupta A, Sharma KV, Nasir M (2013) Use of aluminum oxide nanoparticles in wood composites to enhance the heat transfer during hot-pressing. Eur J Wood Wood Prod 71:193–198. https://doi.org/10.1007/s00107-013-0664-9

    Article  CAS  Google Scholar 

  20. de Cademartori PHG, Artner MA, Alves de Freitas R, Magalhães WLE (2019) Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: rheological and in-situ cure performance. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.107281

    Article  Google Scholar 

  21. Kaboorani A, Riedl B (2011) Effects of adding nano-clay on performance of polyvinyl acetate (PVA) as a wood adhesive. Compos A Appl Sci Manuf 42:1031–1039. https://doi.org/10.1016/j.compositesa.2011.04.007

    Article  CAS  Google Scholar 

  22. Moya R, Rodríguez-Zúñiga A, Vega-Baudrit J, Álvarez V (2015) Effects of adding nano-clay (montmorillonite) on performance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives in Carapa guianensis, a tropical species. Int J Adhes Adhes 59:62–70. https://doi.org/10.1016/j.ijadhadh.2015.02.004

    Article  CAS  Google Scholar 

  23. Chen H, Yan N (2018) Application of Western red cedar (Thuja plicata) tree bark as a functional filler in pMDI wood adhesives. Ind Crops Prod 113:1–9. https://doi.org/10.1016/j.indcrop.2018.01.005

    Article  CAS  Google Scholar 

  24. Veigel S, Müller U, Keckes J et al (2011) Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose 18:1227–1237. https://doi.org/10.1007/s10570-011-9576-1

    Article  CAS  PubMed  Google Scholar 

  25. Pinkl S, van Herwijnen HWG, Veigel S et al (2018) Urea-formaldehyde microspheres as a potential additive to wood adhesive. J Wood Sci 64:390–397. https://doi.org/10.1007/s10086-018-1717-9

    Article  CAS  Google Scholar 

  26. Bono A, Nur MI, Anisuzzaman SM et al (2011) The performance of melamine-Urea-Formaldehyde resin with palm kernel as filler. Adv Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.233-235.3

    Article  Google Scholar 

  27. Ong HR, Khan MMR, Prasad DMR et al (2018) Palm kernel meal as a melamine urea formaldehyde adhesive filler for plywood applications. Int J Adhes Adhes 85:8–14. https://doi.org/10.1016/j.ijadhadh.2018.05.014

    Article  CAS  Google Scholar 

  28. Zhang S, Qi X, Yang M et al (2019) A study on the resistivity and mechanical properties of modified nano-Ag coated Cu particles in electrically conductive adhesives. J Mater Sci Mater Electron 30:9171–9183. https://doi.org/10.1007/s10854-019-01246-8

    Article  CAS  Google Scholar 

  29. Yim MJ, Li Y, Moon KS et al (2008) Review of recent advances in electrically conductive adhesive materials and technologies in electronic packaging. J Adhes Sci Technol 22:1593–1630. https://doi.org/10.1163/156856108X320519

    Article  CAS  Google Scholar 

  30. Hussien AK, Mahmood ADF (2018) Effect of fillers on the adhesion properties of the cured unsaturated polyester adhesive. Rafidain J Sci 27:65–72. https://doi.org/10.33899/rjs.2018.141187

    Article  Google Scholar 

  31. Meschi Amoli B, Hu A, Zhou NY, Zhao B (2015) Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. J Mater Sci Mater Electron 26:4730–4745. https://doi.org/10.1007/s10854-015-3016-1

    Article  CAS  Google Scholar 

  32. Mir I, Kumar D (2008) Recent advances in isotropic conductive adhesives for electronics packaging applications. Int J Adhes Adhes 28:362–371. https://doi.org/10.1016/j.ijadhadh.2007.10.004

    Article  CAS  Google Scholar 

  33. Murray C, Rudman R, Sabade M, Pocius A (2003) Conductive adhesives for electronic assemblies. MRS Bull. https://doi.org/10.1557/mrs2003.127

    Article  Google Scholar 

  34. Cao G, Wang L, Tian Y (2020) Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives. J Mater Sci Mater Electron 31:9675–9684. https://doi.org/10.1007/s10854-020-03513-5

    Article  CAS  Google Scholar 

  35. Wen J, Tian Y, Mei Z et al (2017) Synthesis of polypyrrole nanoparticles and their applications in electrically conductive adhesives for improving conductivity. RSC Adv 7:53219–53225. https://doi.org/10.1039/c7ra09725e

    Article  CAS  Google Scholar 

  36. Inoue M, Tada Y, Muta H, Yamanaka S (2013) Microstructural control of electrically conductive adhesives with Ag micro-fillers by binder chemistry. ICSJ 2013 - IEEE CPMT Symposium Japan. pp 1–4. https://doi.org/10.1109/ICSJ.2013.6756122

  37. Tee DI, Mariatti M, See CH, et al. (2006) International Electronic Manufacturing Technology Study on the Electrical Property of Silver (Ag) Nanoparticles Filled Epoxy Composites for the Application of Electrically Conductive Adhesives (ECAs) in Electronic Packaging 496–505. https://doi.org/10.1109/IEMT.2006.4456501

  38. Nishikawa H, Mikami S, Terada N, Miyake K, Aoki A, Takemoto T (2008) Electrical property of conductive adhesives using silver-coated copper filler. Proceedings—2008 2nd electronics system integration technology conference, ESTC. 825–828. https://doi.org/10.1109/ESTC.2008.4684458

  39. Nishikawa H, Mikami S, Miyake K et al (2010) Effects of silver coating covered with copper filler on electrical resistivity of electrically conductive adhesives. Mater Trans 51:1785–1789. https://doi.org/10.2320/matertrans.MJ201020

    Article  CAS  Google Scholar 

  40. Wong ICP, Lu D (2000) Recent Advances on Electrically Conductive Adhesives for Electronics Applications pp 121–128. https://doi.org/10.1109/ADHES.2000.860585

  41. Aradhana R, Mohanty S, Nayak SK (2019) High performance electrically conductive epoxy/reduced graphene oxide adhesives for electronics packaging applications. J Mater Sci Mater Electron 30:4296–4309. https://doi.org/10.1007/s10854-019-00722-5

    Article  CAS  Google Scholar 

  42. Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. https://doi.org/10.1126/science.1125925

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  44. Chew C, Durairaj R, Hwang J, et al (2014) The Effect of Nano Fillers in Electrical and Mechanical Properties of Isotropic Conductive Adhesive. https://doi.org/10.1109/IEMT.2014.7123070

  45. Zhang W, Zhou Y, Feng K et al (2015) Morphologically controlled bioinspired dopamine-polypyrrole nanostructures with tunable electrical properties. Adv Electron Mater. https://doi.org/10.1002/aelm.201500205

    Article  Google Scholar 

  46. Kilik R, Davies R, Darwish SMH (1989) Thermal conductivity of adhesive filled with metal powders. Int J Adhes Adhes 9(4):219–223. https://doi.org/10.1016/0143-7496(89)90064-X

    Article  CAS  Google Scholar 

  47. Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl Therm Eng 66:493–498. https://doi.org/10.1016/j.applthermaleng.2014.02.044

    Article  CAS  Google Scholar 

  48. Felba J (2011) Thermally conductive adhesives in electronics. Advanced adhesives in electronics: materials, properties and applications. Elsevier Ltd, Amsterdam, pp 15–52

    Chapter  Google Scholar 

  49. Singh AK, Panda BP, Mohanty S et al (2018) Recent developments on epoxy-based thermally conductive adhesives (TCA): a review. Polym Plast Technol Eng 57:903–934. https://doi.org/10.1080/03602559.2017.1354253

    Article  CAS  Google Scholar 

  50. Falat T, Wymysłowski A, Kolbe J, et al. (2006) Numerical Approach to Characterization of Thermally Conductive Adhesives. pp 1–7. https://doi.org/10.1109/ESIME.2006.1643972

  51. Petrova AP, Abeliov YA, Zuev AV (2014) The influence of fillers on thermophysical properties of adhesives. Polym Sci Series D 7:93–95. https://doi.org/10.1134/S1995421214020154

    Article  CAS  Google Scholar 

  52. Ye T, Tian Y, Wang C, et al. (2017) The 18th international conference on electronic packaging technology : Harbin, China, August 16–19, 2017

  53. Alim MA, Abdullah MZ, Aziz MSA et al (2021) Recent advances on thermally conductive adhesive in electronic packaging: a review. Polymers 13:3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu Y, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos A Appl Sci Manuf 32:1749–1757. https://doi.org/10.1016/S1359-835X(01)00023-9

    Article  Google Scholar 

  55. Bujard P, Ansermet JP (1989) Thermally Conductive Aluminium Nitride-Filled Epoxy pp 126–130

  56. Kim J, Kim YD, Nam DG et al (2016) Thermal Properties of epoxy composites with silicon carbide and/or graphite. J Korean Phys Soc 68:551–556. https://doi.org/10.3938/jkps.68.551

    Article  CAS  Google Scholar 

  57. Fu YX, He ZX, Mo DC, Lu SS (2014) Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int J Therm Sci 86:276–283. https://doi.org/10.1016/j.ijthermalsci.2014.07.011

    Article  CAS  Google Scholar 

  58. Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet - Carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744. https://doi.org/10.1002/adma.200800401

    Article  CAS  Google Scholar 

  59. Bolger JC (1992) Prediction and Measurement of Thermal Conductivity Diamond Filled Adhesives. Proceedings 42nd electronic components & technology conference, pp 219–224. https://doi.org/10.1109/ECTC.1992.204210

  60. Li M, Tang C, Zhang L et al (2018) A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide. J Mater Sci Mater Electron 29:4948–4954. https://doi.org/10.1007/s10854-017-8454-5

    Article  Google Scholar 

  61. Permal A, Devarajan M, Huong LH et al (2018) Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride. Polym Compos 39:1372-E1380. https://doi.org/10.1002/pc.24268

    Article  CAS  Google Scholar 

  62. Sanada K, Tada Y, Shindo Y (2009) Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos A Appl Sci Manuf 40:724–730. https://doi.org/10.1016/j.compositesa.2009.02.024

    Article  CAS  Google Scholar 

  63. Wang T, Lei CH, Dalton AB et al (2006) Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv Mater 18:2730–2734. https://doi.org/10.1002/adma.200601335

    Article  CAS  Google Scholar 

  64. Kreckel K, Graichen A, Weigl S (1993) Pressure Sensitive Adhesive With Filler, EP0638096B1

  65. Kim DB (2013) Effect of Acrylic acid contents and inorganic fillers on physical properties of acrylic pressure sensitive adhesive Tape by UV curing. Polym (Korea) 37:184–195. https://doi.org/10.7317/pk.2013.37.2.184

    Article  CAS  Google Scholar 

  66. Park GH, Kim KT, Ahn YT et al (2014) The effects of graphene on the properties of acrylic pressure-sensitive adhesive. J Ind Eng Chem 20:4108–4111. https://doi.org/10.1016/j.jiec.2014.01.008

    Article  CAS  Google Scholar 

  67. Czech Z, Kowalczyk A, Pełech R et al (2012) Using of carbon nanotubes and nano carbon black for electrical conductivity adjustment of pressure-sensitive adhesives. Int J Adhes Adhes 36:20–24. https://doi.org/10.1016/j.ijadhadh.2012.04.004

    Article  CAS  Google Scholar 

  68. Novák I, Florián Š (2003) Pressure-sensitive adhesives for electronic applications. J Mater Sci Lett 22:1237–1239

    Article  Google Scholar 

  69. Li H, Yang Y, Yu Y (2004) Acrylic emulsion pressure-sensitive adhesives (PSAS) reinforced with layered silicate. J Adhes Sci Technol 18:1759–1770. https://doi.org/10.1163/1568561042708340

    Article  CAS  Google Scholar 

  70. Brantseva T, Antonov S, Kostyuk A et al (2016) Rheological and adhesive properties of PIB-based pressure-sensitive adhesives with montmorillonite-type nanofillers. Eur Polym J 76:228–244. https://doi.org/10.1016/j.eurpolymj.2016.01.040

    Article  CAS  Google Scholar 

  71. Kajtna J, Šebenik U (2009) Microsphere pressure sensitive adhesives-acrylic polymer/montmorillonite clay nanocomposite materials. Int J Adhes Adhes 29:543–550. https://doi.org/10.1016/j.ijadhadh.2009.01.001

    Article  CAS  Google Scholar 

  72. Pang B, Ryu CM, Kim H (2013) Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles. Mater Sci Eng B Solid-State Mater Adv Technol 178:1212–1218. https://doi.org/10.1016/j.mseb.2013.08.005

    Article  CAS  Google Scholar 

  73. Yamamoto Y, Fujii S, Shitajima K et al (2015) Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives. Polymer 70:77–87. https://doi.org/10.1016/j.polymer.2015.06.006

    Article  CAS  Google Scholar 

  74. Khalina M, Sanei M, Mobarakeh HS, Mahdavian AR (2015) Preparation of acrylic/silica nanocomposites latexes with potential application in pressure sensitive adhesive. Int J Adhes Adhes 58:21–27. https://doi.org/10.1016/j.ijadhadh.2014.12.007

    Article  CAS  Google Scholar 

  75. Kowalczyk A, Kowalczyk K, Gziut K et al (2019) Influence of a wollastonite microfiller and a halloysite nanofiller on properties of thermally curable pressure-sensitive structural adhesives. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2019.102397

    Article  Google Scholar 

  76. Novák I, Florián Š, Pollák V (2007) Behavior of pressure-sensitive adhesives filled with metallized inorganic particles. Int J Polym Mater Polym Biomater 56:841–849

    Article  Google Scholar 

  77. Czech Z, Arabczyk W, Hełminiak A, Kowalczyk A (2013) Influence of iron carbide filler in carbon matrix on the adhesive properties of acrylic pressure-sensitive adhesives. Int J Adhes Adhes 40:210–214. https://doi.org/10.1016/j.ijadhadh.2012.07.010

    Article  CAS  Google Scholar 

  78. Mittal G, Park SJ, Rhee KY (2020) Acrylic pressure-sensitive adhesive reinforced with aluminum nitride and its thermal properties: effect of surface treatment and particle size. Coatings. https://doi.org/10.3390/coatings10020188

    Article  Google Scholar 

  79. Kim JK, Kim JK, Kim MI, Song MS, Thermal Conductivity and Adhesion Properties of Thermally Conductive Pressure-Sensitive Adhesives

  80. Daniloska V, Keddie JL, Asua JM, Tomovska R (2014) MoS2 nanoplatelet fillers for enhancement of the properties of waterborne pressure-sensitive adhesives. ACS Appl Mater Interfaces 6:22640–22648. https://doi.org/10.1021/am506726f

    Article  CAS  PubMed  Google Scholar 

  81. Cui T, Li Q, Xuan Y, Zhang P (2015) Preparation and thermal properties of the graphene-polyolefin adhesive composites: application in thermal interface materials. Microelectronics reliability. Elsevier Ltd, Amsterdam, pp 2569–2574

    Google Scholar 

  82. Xu CA, Qu Z, Meng H et al (2021) Effect of polydopamine-modified multi-walled carbon nanotubes on the thermal stability and conductivity of UV-curable polyurethane/polysiloxane pressure-sensitive adhesives. Polymer. https://doi.org/10.1016/j.polymer.2021.123615

    Article  Google Scholar 

  83. Czech Z, Pełech R, Kowalczyk A et al (2011) Electrically conductive acrylic pressure-sensitive adhesives containing carbon black. Pol J Chem Technol 13:77–81. https://doi.org/10.2478/v10026-011-0053-2

    Article  Google Scholar 

  84. Kostyuk A, Ignatenko VY, Makarova V et al (2020) Polyethylene wax as an alternative to mineral fillers for preparation of reinforced pressure-sensitive adhesives. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2020.102689

    Article  Google Scholar 

  85. Lamb J, Buffet JC, Turner ZR et al (2020) Metallocene polyethylene wax synthesis. Macromolecules 53:5847–5856. https://doi.org/10.1021/acs.macromol.0c00990

    Article  CAS  Google Scholar 

  86. Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36–42. https://doi.org/10.1016/j.ijadhadh.2017.11.009

    Article  CAS  Google Scholar 

  87. Yu Q, Yang W, Wang Q et al (2019) Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohyd Polym 217:168–177. https://doi.org/10.1016/j.carbpol.2019.04.049

    Article  CAS  Google Scholar 

  88. Nassif M, Elaskary F (2012) Chapter 7. Nanotechnology and Nanoparticles in Contemporary Dental Adhesives, pp 131–160. https://doi.org/10.13140/2.1.2681.2800

  89. van Landuyt KL, Snauwaert J, de Munck J et al (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785. https://doi.org/10.1016/j.biomaterials.2007.04.044

    Article  CAS  PubMed  Google Scholar 

  90. Yoshida Y, Inoue S (2012) Chemical analyses in dental adhesive technology. Japanese Dental Sci Rev 48:141–152. https://doi.org/10.1016/j.jdsr.2012.03.001

    Article  Google Scholar 

  91. Solhi L, Atai M, Nodehi A, Imani M (2012) A novel dentin bonding system containing poly(methacrylic acid) grafted nanoclay: Synthesis, characterization and properties. Dent Mater 28:1041–1050. https://doi.org/10.1016/j.dental.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  92. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26:471–482. https://doi.org/10.1016/j.dental.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  93. Bedran-Russo A, Leme-Kraus AA, Vidal CMP, Teixeira EC (2017) An overview of dental adhesive systems and the dynamic tooth-adhesive interface. Dent Clin North Am 61:713–731. https://doi.org/10.1016/j.cden.2017.06.001

    Article  PubMed  Google Scholar 

  94. Giannini M, Mettenburg D, Arrais C, Rueggeberg F (2011) The effect of filler addition on biaxial flexure strength and modulus of commercial dentin bonding systems. Quintessence international (Berlin, Germany: 1985) 42:39–43

  95. Leitune VCB, Collares FM, Takimi A et al (2013) Niobium pentoxide as a novel filler for dental adhesive resin. J Dent 41:106–113. https://doi.org/10.1016/j.jdent.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  96. Khosravi K, Mirmohamadi H, Kashani K, Professor A (2012) Evaluation of effect of adding silica fillers to adhesive on microleakage of composite restorations in different times. J Islam Dental Assoc Iran (Jidai) 24(3):105–110

    Google Scholar 

  97. Belli R, Kreppel S, Petschelt A et al (2014) Strengthening of dental adhesives via particle reinforcement. J Mech Behav Biomed Mater 37:100–108. https://doi.org/10.1016/j.jmbbm.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  98. Shamsudin R, Atiqah Abdul Azam F, Abdul Hamid MA, Ismail H (2017) Bioactivity and cell compatibility of β-wollastonite derived from rice husk ash and limestone. Materials. https://doi.org/10.3390/ma10101188

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bendary IM, Garcia IM, Collares FM et al (2020) Wollastonite as filler of an experimental dental adhesive. J Dent. https://doi.org/10.1016/j.jdent.2020.103472

    Article  PubMed  Google Scholar 

  100. Atai M, Solhi L, Nodehi A et al (2009) PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater 25:339–347. https://doi.org/10.1016/j.dental.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  101. Solhi L, Atai M, Nodehi A et al (2012) Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: synthesis, characterization and properties of the adhesive. Dent Mater 28:369–377. https://doi.org/10.1016/j.dental.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  102. Collares FM, Portella FF, da Silva Fraga GC et al (2014) Mineral deposition at dental adhesive resin containing niobium pentoxide. Appl Adhes Sci. https://doi.org/10.1186/s40563-014-0022-0

    Article  Google Scholar 

  103. Garcia IM, Leitune VCB, Ferreira CJ, Collares FM (2018) Tantalum oxide as filler for dental adhesive resin. Dent Mater J 37:897–903. https://doi.org/10.4012/dmj.2017-308

    Article  CAS  PubMed  Google Scholar 

  104. Chan DCN, Titus HW, Chung K-H et al (1999) Radiopacity of tantalum oxide nanoparticle filled resins. Dental Mater Off Publ Acad Dental Mater 15:219–222. https://doi.org/10.1016/S0109-5641(99)00039-1

    Article  CAS  Google Scholar 

  105. Alhenaki AM, Attar EA, Alshahrani A et al (2021) Dentin bond integrity of filled and unfilled resin adhesive enhanced with silica nanoparticles-An SEM, EDX, Micro-Raman, FTIR and micro-tensile bond strength study. Polymers. https://doi.org/10.3390/polym13071093

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang J, Yu Q, Yang Z (2018) Effect of hydrophobic surface treated fumed silica fillers on a one-bottle etch and rinse model dental adhesive. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-017-6015-3

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fani Jahromi S, Naimi-Jamal MR, Atai M (2014) Preparation of Dental Polymeric Nano-Adhesives with Silica Nano-Porous (MCM-41) as Novel Fillers for Improving the Adhesive Mechanical Properties: Synthesis and Application. MDPI AG, p d010

  108. Azad E, Atai M, Zandi M et al (2018) Structure–properties relationships in dental adhesives: effect of initiator, matrix monomer structure, and nano-filler incorporation. Dent Mater 34:1263–1270. https://doi.org/10.1016/j.dental.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  109. Kasraei S, Khamverdi Z (2009) Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin. J Dentistry (Tehran) 6

  110. Atai M, Pahlavan A, Moin N (2012) Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater 28:133–145. https://doi.org/10.1016/j.dental.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  111. Carreño NLV, Oliveira TCS, Piva E et al (2012) A dental adhesive resin. Nano-Micro Lett 4:189–196. https://doi.org/10.3786/nml.v4i3

    Article  Google Scholar 

  112. Habib E, Wang R, Wang Y et al (2016) Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2:1–11. https://doi.org/10.1021/acsbiomaterials.5b00401

    Article  CAS  PubMed  Google Scholar 

  113. Wagner A, Belli R, Stötzel C et al (2013) Biomimetically-and hydrothermally-grown HAp nanoparticles as reinforcing fillers for dental adhesives. J Adhes Dent 15:413–422. https://doi.org/10.3290/j.jad.a29534

    Article  CAS  PubMed  Google Scholar 

  114. Provenzi C, Cb Leitune V, Collares FM et al (2014) Interface evaluation of experimental dental adhesives with nanostructured hydroxyapatite incorporation. Appl Adhes Sci. https://doi.org/10.1186/2196-4351-2-2

    Article  Google Scholar 

  115. Ibrahim R, Sabry R, Ibrahim A-A, et al. Novel Bifunctional Nanofiller (Bioactive\Antimicrobial) for Improving Dental Adhesives Efficacy. J Oral Dent Health, 3(2):1–11

  116. Bona AD, Pecho OE, Alessandretti R (2015) Zirconia as a dental biomaterial. Materials 8:4978–4991. https://doi.org/10.3390/ma8084978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lohbauer U, Wagner A, Belli R et al (2010) Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater 6:4539–4546. https://doi.org/10.1016/j.actbio.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  118. Dadkan S, Salari S, Khakbiz M, Atai M (2014) Mechanical Properties of Dental Adhesives Containing Gold Nano Particles. Proceedings of 5th international congress on nanoscience & nanotechnology (ICNN2014)

  119. Bapat RA, Chaubal T, Dharmadhikari S et al (2020) Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119596

    Article  PubMed  Google Scholar 

  120. Degrazia FW, Leitune VCB, Visioli F et al (2018) Long-term stability of dental adhesive incorporated by boron nitride nanotubes. Dent Mater 34:427–433. https://doi.org/10.1016/j.dental.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  121. Degrazia FW, Leitune VCB, Samuel SMW, Collares FM (2017) Boron nitride nanotubes as novel fillers for improving the properties of dental adhesives. J Dent 62:85–90. https://doi.org/10.1016/j.jdent.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  122. Ikemura K, Tay FR, Kouro Y et al (2003) Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater Off Publ Acad Dent Mater 19(2):137–146. https://doi.org/10.1016/s0109-5641(02)00022-2

    Article  CAS  Google Scholar 

  123. Ito S, Iijima M, Hashimoto M et al (2011) Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent 39:72–79. https://doi.org/10.1016/j.jdent.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  124. Ikemura K, Tay FR, Endo T, Pashley DH (2008) A Review of Chemical-approach and Ultramorphological Studies on the Development of Fluoride-releasing Dental Adhesives Comprising New Pre-Reacted Glass Ionomer (PRG) Fillers

  125. Khvostenko D, Hilton TJ, Ferracane JL et al (2016) Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater 32:73–81. https://doi.org/10.1016/j.dental.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  126. Abou Neel EA, Kiani A, Valappil SP et al (2019) Glass microparticle- versus microsphere-filled experimental dental adhesives. J Appl Polym Sci. https://doi.org/10.1002/app.47832

    Article  Google Scholar 

  127. Wang Z, Jia Z, Feng X, Zou Y (2018) Graphene nanoplatelets/epoxy composites with excellent shear properties for construction adhesives. Compos B Eng 152:311–315. https://doi.org/10.1016/j.compositesb.2018.08.113

    Article  CAS  Google Scholar 

  128. Jojibabu P, Zhang YX, Prusty BG (2020) A review of research advances in epoxy-based nanocomposites as adhesive materials. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2019.102454

    Article  Google Scholar 

  129. Bagherzadeh A, Jamshidi M, Monemian F (2020) Investigating mechanical and bonding properties of micro/nano filler containing epoxy adhesives for anchoring steel bar in concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117979

    Article  Google Scholar 

  130. Korayem AH, Li CY, Zhang QH et al (2015) Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface. Compos B Eng 79:95–104. https://doi.org/10.1016/j.compositesb.2015.03.063

    Article  CAS  Google Scholar 

  131. Kothe M (2014) Epoxy resin adhesives for structural purposes-a new approach. International Conference at Glasstec, Düsseldorf, Germany

  132. Kumar P, Patnaik A, Chaudhary S (2017) A review on application of structural adhesives in concrete and steel–concrete composite and factors influencing the performance of composite connections. Int J Adhes Adhes 77:1–14. https://doi.org/10.1016/j.ijadhadh.2017.03.009

    Article  CAS  Google Scholar 

  133. Kahraman R, Al-Harthi M (2005) Moisture diffusion into aluminum powder-filled epoxy adhesive in sodium chloride solutions. Int J Adhes Adhes 25:337–341. https://doi.org/10.1016/j.ijadhadh.2004.10.003

    Article  CAS  Google Scholar 

  134. Charitidis PJ (2020) The effect of nanoparticles in single lap joints studied by numerical analyses. Eur J Eng Res Sci 5:1288–1293. https://doi.org/10.24018/ejers.2020.5.10.2194

    Article  Google Scholar 

  135. Jouyandeh M, Moini Jazani O, Navarchian AH, Saeb MR (2016) High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints. J Reinf Plast Compos 35:1685–1695. https://doi.org/10.1177/0731684416665248

    Article  CAS  Google Scholar 

  136. Doll K, Xie H, de Meter E (2017) Investigation into the use of adhesive fillers and soft start curing to reduce the distortion of a work-piece supported by PAAW joints. Procedia Manuf 10:147–158. https://doi.org/10.1016/j.promfg.2017.07.041

    Article  Google Scholar 

  137. Szewczak A, Szeląg M (2020) Physico-mechanical and rheological properties of epoxy adhesives modified by microsilica and sonication process. Materials 13:1–20. https://doi.org/10.3390/ma13235310

    Article  CAS  Google Scholar 

  138. Zhou H, Liu HY, Zhou H et al (2016) On adhesive properties of nano-silica/epoxy bonded single-lap joints. Mater Des 95:212–218. https://doi.org/10.1016/j.matdes.2016.01.055

    Article  CAS  Google Scholar 

  139. Gupta SK, Shukla DK, Kaustubh Ravindra D (2021) Effect of nanoalumina in epoxy adhesive on lap shear strength and fracture toughness of aluminium joints. J Adhes 97:117–139. https://doi.org/10.1080/00218464.2019.1641088

    Article  CAS  Google Scholar 

  140. Pustovgar A, Zhuravlev A, Nefedov S et al (2014) Comparison of the effectiveness of fine mineral fillers in cement-based tile adhesives. Advanced materials research. Trans Tech Publications Ltd, Freienbach, pp 1496–1502

    Google Scholar 

  141. Anam K, Purnowidodo A (2018) Effect of filler volume fraction on mechanical strength and failure mode of aluminium bonded with epoxy-based adhesive. In: AIP Conference Proceedings. American Institute of Physics Inc. https://doi.org/10.1063/1.5046287

  142. Yuniwantoro C, Surojo E, Smaradhana DF, Imaduddin F (2020) Effect of Filler on Shear Strength and Electrical Conductivity in Epoxy Based Aluminium Bonded. Mekanika: Majalah Ilmiah Mekanika 19. https://doi.org/10.20961/mekanika.v19i1.39903

  143. Ghosh PK, Patel A, Kumar K (2016) Adhesive joining of copper using nano-filler composite adhesive. Polymer 87:159–169. https://doi.org/10.1016/j.polymer.2016.02.006

    Article  CAS  Google Scholar 

  144. Tutunchi A, Kamali R, Kianvash A (2015) Steel-epoxy composite joints bonded with nano-TiO2 reinforced structural acrylic adhesive. J Adhes 91:663–676. https://doi.org/10.1080/00218464.2014.961187

    Article  CAS  Google Scholar 

  145. Kavak N, Altan E (2014) Influence of filler amount and content on the mechanical performance of joints bonded with metal powder filled adhesive. Materials science forum. Trans Tech Publications Ltd, Freienbach, pp 226–233

    Google Scholar 

  146. Ghosh PK, Nukala SK (2008) Properties of adhesive joint of inorganic nano-filler composite adhesive. Indian J Eng Mater Sci 15:68–74

    CAS  Google Scholar 

  147. Al-Harthi M, Loughlin K, Kahraman R (2007) Moisture diffusion into epoxy adhesive: testing and modeling. Adsorption 13:115–120. https://doi.org/10.1007/s10450-007-9011-y

    Article  CAS  Google Scholar 

  148. Back JH, Hwang JU, Lee YH et al (2018) Morphological study and mechanical property of epoxy-foam adhesives based on epoxy composites for automotive applications. Int J Adhes Adhes 87:124–129. https://doi.org/10.1016/j.ijadhadh.2018.09.010

    Article  CAS  Google Scholar 

  149. Kowalczyk A, Kowalczyk K, Czech Z (2012) Synthesis and properties of solid structural adhesives modified in-situ using 1D and 2D-type microfillers. Int J Adhes Adhes 32:76–81. https://doi.org/10.1016/j.ijadhadh.2011.10.006

    Article  CAS  Google Scholar 

  150. Tai RCL, Szklarska-Smialowska Z (1993) Effect of fillers on the degradation of automotive epoxy adhesives in aqueous solutions Part II The microhardness change and delamination of automotive epoxy adhesives in distilled water and NaCI solutions. J Mater Sci 28:6205–6210. https://doi.org/10.1007/BF00365045

    Article  CAS  Google Scholar 

  151. Tai RCL, Szklarska-Smialowska Z (1996) Delamination of filler-incorporated automotive epoxy adhesives from different steel substrates upon exposure to distilled water and NaC! solutions under applied bending stresses. J Mater Sci 31:1925–1935. https://doi.org/10.1007/BF00372209

    Article  CAS  Google Scholar 

  152. Jojibabu P, Ram GDJ, Deshpande AP, Bakshi SR (2017) Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging. Polym Degrad Stab 140:84–94. https://doi.org/10.1016/j.polymdegradstab.2017.04.017

    Article  CAS  Google Scholar 

  153. Valášek P, Müller M (2016) Possibilities of adhesives filling with micro-particle fillers - Lap-Shear tensile strength. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 64:195–201. https://doi.org/10.11118/actaun201664010195

    Article  Google Scholar 

  154. Mejbel MK, Allawi MK, Oudah MH (2019) Effects of WC, SiC, iron and glass fillers and their high percentage content on adhesive bond strength of an aluminium alloy butt joint: an experimental study. J Mech Eng Res Dev 42:224–231. https://doi.org/10.26480/jmerd.05.2019.224.231

    Article  Google Scholar 

  155. Zhang C, Sun L, Huang B et al (2019) Electrical and mechanical properties of CNT/CB dual filler conductive adhesives (DFCAs) for automotive multi-material joints. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111183

    Article  PubMed  PubMed Central  Google Scholar 

  156. Safronava N, Lyon R (2012) Combustion Characteristics of Adhesive Compounds Used in the Construction of Aircraft Cabin Materials. U.S. Department of Transportation. Federal Aviation Administration

  157. Tserpes K (2020) Adhesive Bonding of Aircraft Structures. In: Revolutionizing Aircraft Materials and Processes. Springer International Publishing. https://doi.org/10.1007/978-3-030-35346-9_12

  158. Pantelakis S, Tserpes KI (2014) Adhesive bonding of composite aircraft structures: challenges and recent developments. Sci China Phys Mech Astron 57:2–11. https://doi.org/10.1007/s11433-013-5274-3

    Article  Google Scholar 

  159. Higgins A (1998) Adhesive bonding of aircraft structures. Int J Adhes Adhes 20(5):367–376. https://doi.org/10.1016/S0143-7496(00)00006-3

    Article  Google Scholar 

  160. Petrova AP, Lukina NF (2008) Adhesive technologies in aircraft construction. Polym Sci, Ser D 1:83–90. https://doi.org/10.1134/s1995421208020032

    Article  Google Scholar 

  161. Xu H, Zhang X, Hu G et al (2020) A special filler for epoxy resin to enhance the T peel strength of adhesive. Polym Compos 41:4372–4378. https://doi.org/10.1002/pc.25719

    Article  CAS  Google Scholar 

  162. Vietri U, Guadagno L, Raimondo M et al (2014) Nanofilled epoxy adhesive for structural aeronautic materials. Compos B Eng 61:73–83. https://doi.org/10.1016/j.compositesb.2014.01.032

    Article  CAS  Google Scholar 

  163. Jakubinek MB, Ashrafi B, Zhang Y et al (2015) Single-walled carbon nanotube-epoxy composites for structural and conductive aerospace adhesives. Compos B Eng 69:87–93. https://doi.org/10.1016/j.compositesb.2014.09.022

    Article  CAS  Google Scholar 

  164. Gkikas G, Sioulas D, Lekatou A et al (2012) Enhanced bonded aircraft repair using nano-modified adhesives. Mater Des 41:394–402. https://doi.org/10.1016/j.matdes.2012.04.052

    Article  CAS  Google Scholar 

  165. Wolf A, Buchman A, Eitan A et al (2012) Improved adhesives containing CNT/SP1 nano fillers. J Adhes. https://doi.org/10.1080/00218464.2012.660398

    Article  Google Scholar 

  166. Otorgust G, Dodiuk H, Kenig S, Tenne R (2017) Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT. Eur Polymer J 89:281–300. https://doi.org/10.1016/j.eurpolymj.2017.02.027

    Article  CAS  Google Scholar 

  167. Fu H, Yan C, Zhou W, Huang H (2014) Nano-SiO2/fluorinated waterborne polyurethane nanocomposite adhesive for laminated films. J Ind Eng Chem 20:1623–1632. https://doi.org/10.1016/j.jiec.2013.08.009

    Article  CAS  Google Scholar 

  168. Fernández-García JC, Pastor-Sempere N, Martín-Martínez JM (1992) Addition of silica to polyurethane adhesives. J Adhes 38:31–53. https://doi.org/10.1080/00218469208031266

    Article  Google Scholar 

  169. Donate-Robles J, Martín-Martínez JM (2011) Comparative properties of thermoplastic polyurethane adhesive filled with natural or precipitated calcium carbonate. Macromol Symp 301:63–72. https://doi.org/10.1002/masy.201150309

    Article  CAS  Google Scholar 

  170. Sepulcre-Guilabert J, Ferrándiz-Gómez TP, Martín-Martínez JM (2001) Properties of polyurethane adhesives containing natural calcium carbonate + fumed silica mixtures. J Adhes Sci Technol 15:187–203. https://doi.org/10.1163/156856101743409

    Article  CAS  Google Scholar 

  171. Donate-Robles J, Martín-Martínez JM (2011) Addition of precipitated calcium carbonate filler to thermoplastic polyurethane adhesives. Int J Adhes Adhes 31:795–804. https://doi.org/10.1016/j.ijadhadh.2011.07.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti P. More.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanghvi, M.R., Tambare, O.H. & More, A.P. Performance of various fillers in adhesives applications: a review. Polym. Bull. 79, 10491–10553 (2022). https://doi.org/10.1007/s00289-021-04022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04022-z

Keywords

Navigation