Skip to main content

Advertisement

Log in

Preparation and study of mechanical and thermal properties of silicone rubber/poly(styrene–ethylene butylene–styrene) triblock copolymer blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, a compound has been developed via melt blending and curing of poly(styrene–ethylene butylene–styrene) triblock copolymer (SEBS) with silicone rubber (SR). The cure characteristics, mechanical, thermal, and dynamic mechanical properties of the SR/SEBS blends of different mass ratios (100/0, 90/10, 75/25, 50/50, 25/75, and 0/100) are investigated. The cure characteristics reveal that the crosslinking and cure rate of SEBS are lower than SR. The cure rate of SEBS is 0.35 dN.m/min, while it is 15.35 dN.m/min for SR. Also, in the blends, as the content of SR increased, the crosslinking and cure rate of the blends show an upward trend. The results of mechanical properties indicate that the presence of SEBS with a formed (simultaneously physical and chemical) double network can strengthen the mechanical properties of SR, as the tensile strength and elongation at break of the blends improve by increasing the content of SEBS. It is found that adding 25% of SEBS to SR enhances the tensile strength and elongation at break of the SR blend from 5.66 to 7.56 MPa and from 116 to 185%, respectively. Thermogravimetry demonstrates the better thermal stability of SR than SEBS and the blends. The obtained primary thermal parameters reveal that the thermal stability of the SEBS phase in the blends improves with growing the SR content. Dynamic mechanical thermal analysis exhibits two loss tangent peaks for SEBS at 119.61 and − 45.36 °C, which are related to the glass transition temperatures of polystyrene (as a physical crosslinker phase) and ethylene–butylene blocks, respectively. Also, two peaks are observed for SR at − 37.16 and − 134.16 °C. Differential scanning calorimetry confirms that the two temperatures are related to the melting and glass transition temperatures of SR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hsissou R, Bekhta A, Dagdag O, El Bachiri A, Rafik M, Elharfi A (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6:e04187. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hsissou R, Elharfi A (2020) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Univ Sci 32:235–244. https://doi.org/10.1016/j.jksus.2018.04.030

    Article  Google Scholar 

  3. Hsissou R, Dagdag O, Berradi M, El Bouchti M, Assouag M, El Bachiri A, Elharfi A (2019) Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Appl Sci 8:1–9. https://doi.org/10.1007/s42452-019-0911-8

    Article  CAS  Google Scholar 

  4. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  5. Hsissou R, Bekhta A, Elharfi A (2017) Viscosimetric and rheological studies of a new trifunctional epoxy pre-polymer with noyan ethylene: Triglycidyl Ether of Ethylene of Bisphenol a (TGEEBA). J Mater Environ Sci 8:603–610

    CAS  Google Scholar 

  6. Hsissou R, El Bouchti M, Elharfi A (2017) Elaboration and viscosimetric, viscoelastic and rheological studies of a new hexafunctional polyepoxide polymer: hexaglycidyl ethylene of methylene dianiline. J Mater Environ Sci 8:4349–4361

    CAS  Google Scholar 

  7. Hsissou R, Berradi M, El Bouchti M, El Bachiri A, El Harfi A (2019) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76:4859–4878. https://doi.org/10.1007/s00289-018-2639-9

    Article  CAS  Google Scholar 

  8. Khezri A, Sahebi M, Mohammadi M (2021) Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde. J Therm Anal Calorim 1–9. https://doi.org/10.1007/s10973-021-11085-7

  9. Nasrollah S, Najmoddin N, Mohammadi M, Fayyaz A, Nyström B (2021) Three dimensional polyurethane/hydroxyapatite bioactive scaffolds: The role of hydroxyapatite on pore generation. J Appl Polym Sci 138:50017. https://doi.org/10.1002/app.50017

    Article  CAS  Google Scholar 

  10. Hajzamani D, Shokrollahi P, Najmoddin N, Shokrolahi F (2020) Effect of engineered PLGA-gelatin-chitosan/PLGA-gelatin/PLGA-gelatin-graphene three-layer scaffold on adhesion/proliferation of HUVECs. Polym Adv Technol 31:1896–1910. https://doi.org/10.1002/pat.4915

    Article  CAS  Google Scholar 

  11. Ebrahimi A, Ahmadjo S, Mohammadi M, Mortazavi M, Ahmadi M (2019) Interplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene. Polyolefins J 7:1–11. https://doi.org/10.22063/poj.2019.2447.1132

    Article  CAS  Google Scholar 

  12. Dodiuk H, Goodman SH (2014) Handbook of thermoset plastics. William Andrew Publishing, Boston

    Google Scholar 

  13. Gao X, Liu H, Wei H, Zheng J, Huang G (2019) Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber. Polym Bull 76:2835–2850. https://doi.org/10.1007/s00289-018-2499-3

    Article  CAS  Google Scholar 

  14. Brydson JA (1999) Plastics materials. Butterworth- Heinemann, Oxford

    Google Scholar 

  15. Zhang B, Li R, Luo J, Chen Y, Zou H, Liang M (2018) Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings. Polym Bull 75:2105–2124. https://doi.org/10.1007/s00289-017-2127-7

    Article  CAS  Google Scholar 

  16. Song J, Wu L, Zhang Y (2020) Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework. Polym Bull 77:2139–2153. https://doi.org/10.1007/s00289-019-02839-3

    Article  CAS  Google Scholar 

  17. Mohite A, Rajpurkar Y, More A (2021) Bridging the gap between rubbers and plastics: a review on thermoplastic polyolefin elastomers. Polym Bull 15:1–35. https://doi.org/10.1007/s00289-020-03522-8

    Article  CAS  Google Scholar 

  18. Garhwal A, Maiti N (2016) Influence of styrene–ethylene–butylene–styrene (SEBS) copolymer on the short-term static mechanical and fracture performance of polycarbonate (PC)/SEBS blends. Polym Bull 73:1719–1740. https://doi.org/10.1007/s00289-015-1573-3

    Article  CAS  Google Scholar 

  19. Qiao Z, Ma Y, Chen X, Chen M, Hong K, Li Z, Wang Z (2020) Mechanical and piezo-resistive properties of functionalized multi-walled carbon nanotubes/styrene-ethylene-butadiene-styrene composites. Polym Compos 41:2082–2093. https://doi.org/10.1002/pc.25522

    Article  CAS  Google Scholar 

  20. Polat K, Sen M (2014) Curing kinetics of styrene-(ethylene-butylene)-styrene (SEBS) copolymer by peroxides in the presence of co-agents. J Polym Eng 34:787–792. https://doi.org/10.1515/polyeng-2014-0056

    Article  CAS  Google Scholar 

  21. Basuli U, Chaki K, Naskar K (2008) Mechanical properties of thermoplastic elastomers based on silicone rubber and an ethylene–octene copolymer by dynamic vulcanization. J Appl Polym Sci 108:1079–1085. https://doi.org/10.1002/app.27611

    Article  CAS  Google Scholar 

  22. Chen J, Liu J, Yao Y, Chen S (2020) Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Eng Fract Mech 235:107195. https://doi.org/10.1016/j.engfracmech.2020.107195

    Article  Google Scholar 

  23. Chiulan I, Panaitescu D, Radu ER, Frone AN, Gabor RA, Nicolae CA, Chinga-Carrasco G (2020) Comprehensive characterization of silica-modified silicon rubbers. J Mech Behav Biomed Mater 101:103427. https://doi.org/10.1016/j.jmbbm.2019.103427

    Article  CAS  PubMed  Google Scholar 

  24. Dong F, Wang X, Li S, Hao J, Tang X, Kuang R, Feng S (2019) Applications of α, ω-telechelic polydimethylsiloxane as cross-linkers for preparing high-temperature vulcanized silicone rubber. Polym Adv Technol 30:932–940. https://doi.org/10.1002/pat.4527

    Article  CAS  Google Scholar 

  25. Chen W, Liu Y, Xu C, Liu Y, Wang Q (2017) Synthesis and properties of an intrinsic flame retardant silicone rubber containing phosphaphenanthrene structure. RSC Adv 63:39786–39795. https://doi.org/10.1039/C7RA06798D

    Article  Google Scholar 

  26. Januszewski R, Dutkiewicz M, Maciejewski H, Marciniec B (2018) Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings. React Funct Polym 123:1–9. https://doi.org/10.1016/j.reactfunctpolym.2017.12.006

    Article  CAS  Google Scholar 

  27. Lai SM, You PY (2018) Preparation and characterization of ethylene vinyl-acetate copolymer/silicone blends with excellent two-way shape memory properties. Macromol Res 26:984–997. https://doi.org/10.1007/s13233-018-6134-9

    Article  CAS  Google Scholar 

  28. Ganesh B, Unnikrishnan G (2006) Cure characteristics, morphology, mechanical properties, and aging characteristics of silicone rubber/ethylene vinyl acetate blends. J Appl Polym Sci 99:1069–1082. https://doi.org/10.1002/app.22621

    Article  CAS  Google Scholar 

  29. Zhang W, Yan W, Pan R, Guo W, Wu G (2018) Synthesis of silane-grafted ethylene vinyl acetate copolymer and its application to compatibilize the blend of ethylene-propylene-diene copolymer and silicone rubber. Polym Eng Sci 58:719–728. https://doi.org/10.1002/pen.24604

    Article  CAS  Google Scholar 

  30. Kole S, Chaki TK, Bhowmick AK, Tripathy DK (1993) Effect of compatibiliser, curing sequence and ageing on the thermal stability of silicone rubber, EPDM rubber and their blends. Polym Degrad Stab 41:109–116. https://doi.org/10.1016/0141-3910(93)90069-U

    Article  CAS  Google Scholar 

  31. Serenko OA, Pryakhina TA, Vasil’ev VG, Buzin MI, Volkov IO, Kotov VM, Muzafarov AM, (2021) Effect of reactionary capable siloxane compatibilizer on the properties of blends of ethylene propylene diene and siloxane rubbers. Russ Chem Bull 70:960–966. https://doi.org/10.1007/s11172-021-3173-8

    Article  CAS  Google Scholar 

  32. Galeziewska M, Lipinska M, Mrlik M, Ilcikova M, Gajdosova V, Slouf M, Pietrasik J (2021) Polyacrylamide brushes with varied morphologies as a tool for control of the intermolecular interactions within EPDM/MVQ blends. Polymer 215:123387. https://doi.org/10.1016/j.polymer.2021.123387

    Article  CAS  Google Scholar 

  33. Jalali-Arani A, Katbab AA, Nazockdast H (2003) Preparation of thermoplastic elastomers based on silicone rubber and polyethylene by thermomechanical reactive blending: effects of polyethylene structural parameters. J Appl Polym Sci 90:3402–3408. https://doi.org/10.1002/app.13064

    Article  CAS  Google Scholar 

  34. Jana RN, Mukunda PG, Nando GB (2003) Thermogravimetric analysis of compatibilized blends of low density polyethylene and poly (dimethyl siloxane) rubber. Polym Degrad Stab 80:75–82. https://doi.org/10.1016/S0141-3910(02)00385-3

    Article  CAS  Google Scholar 

  35. Matsuura K, Saito H (2018) Tensile properties and interfacial adhesion of silicone rubber/polyethylene blends by reactive blending. J Appl Polym Sci 135:46192. https://doi.org/10.1002/app.46192

    Article  CAS  Google Scholar 

  36. Giri R, Naskar K, Nando GB (2012) In-situ compatibilization of linear low-density polyethylene and Polydimethyl siloxane rubber through reactive blending. Mater Express 2:37–50. https://doi.org/10.1166/mex.2012.1047

    Article  CAS  Google Scholar 

  37. Hidayah N, Mustapha M, Ismail H, Kamarol M (2018) Linear low-density polyethylene/silicone rubber nanocomposites: Optimization of parameters and effect on electrical properties. J Elastomers Plast 50:36–57. https://doi.org/10.1177/0095244317704983

    Article  CAS  Google Scholar 

  38. Liu C, Ruan G, Wang P, Zhou Y, Xu P, Ding Y (2019) Synergistic effect of ILs modified MWCNTs on enhanced dielectric properties of silicone rubber/POE blends. Mater Lett 239:203–206. https://doi.org/10.1016/j.matlet.2018.12.065

    Article  CAS  Google Scholar 

  39. Padmanabhan R, Naskar K, Nandom GB (2017) Influence of octene level in EOC–PDMS thermoplastic vulcanizates for cable insulation applications. Polym Plast Technol Eng 56:276–295. https://doi.org/10.1080/03602559.2016.1227841

    Article  CAS  Google Scholar 

  40. Padmanabhan R, Naskar K, Nando GB (2015) Radiation crosslinked blends based on an ethylene octene copolymer (EOC) and polydimethyl siloxane (PDMS) rubber with special reference to the optimization of processing parameters. RSC Adv 5:99405–99417. https://doi.org/10.1039/C5RA19049E

    Article  CAS  Google Scholar 

  41. Leng L, Han QY, Wu YP (2020) The aging properties and phase morphology of silica filled silicone rubber/butadiene rubber composites. RSC Adv 34:20272–20278. https://doi.org/10.1039/D0RA03045G

    Article  Google Scholar 

  42. Han Q, Zhang L, Wu Y (2020) Enhanced interfacial compatibility and dynamic fatigue crack propagation behavior of natural rubber/silicone rubber composites. Ind Eng Chem Res 59:15624–15633. https://doi.org/10.1021/acsapm.1c01007

    Article  CAS  Google Scholar 

  43. Han Q, Zhang L, Wu Y (2019) Relationship between dynamic fatigue crack propagation properties and viscoelasticity of natural rubber/silicone rubber composites. RSC Adv 51:29813–29820. https://doi.org/10.1039/C9RA05833H

    Article  Google Scholar 

  44. Sun Z, Huang Q, Wang Y, Zhang L, Wu Y (2017) Structure and properties of silicone rubber/styrene–butadiene rubber blends with in situ interface coupling by thiol-ene click reaction. Ind Eng Chem Res 56:1471–1477. https://doi.org/10.1021/acs.iecr.6b04146

    Article  CAS  Google Scholar 

  45. Liang Y, Wang H, Li J, Wu S, Han W, Kang H, Fang Q (2021) Green thermoplastic vulcanizates based on silicone rubber and poly (butylene succinate) via in situ interfacial compatibilization. ACS Omega 6:4461–4469. https://doi.org/10.1021/acsomega.0c06036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu W, Yu B (2020) The mechanical and thermal properties of KH590-basalt fibre-reinforced silicone rubber/fluorine rubber composites. J Rubber Res 23:163–171. https://doi.org/10.1007/s42464-020-00046-8

    Article  CAS  Google Scholar 

  47. Gan LM, Ni HY, Zhou YJ, Chen J (2011) Study on vulcanization and thermal decomposition behaviors of methyl vinyl silicone rubber/polyurethane rubber blends. J Macromol Sci B 50:1491–1499. Doi: https://doi.org/10.1080/00222348.2010.518887

  48. Drupitha MP, Bankoti K, Pal P, Das B, Parameswar R, Dhara S, Naskar K (2019) Morphology-induced physico-mechanical and biological characteristics of TPU–PDMS blend scaffolds for skin tissue engineering applications. J Biomed Mater Res B 107:1634–1644. https://doi.org/10.1002/jbm.b.34256

    Article  CAS  Google Scholar 

  49. Cui ZW, Jing YR, Liu SS, Liu GY (2021) Systematic investigation on the effect of crosslinking agent type and dosage on the performance of TPU/MVQ based thermoplastic vulcanizates. J Appl Polym Sci 138:50630. https://doi.org/10.1002/app.50630

    Article  CAS  Google Scholar 

  50. Pantoja M, Jian PZ, Cakmak M, Cavicchi KA (2019) Shape memory properties of polystyrene-block-poly (ethylene-co-butylene)-block-polystyrene (SEBS) ABA triblock copolymer thermoplastic elastomers. ACS Appl Polym Mater 1:414–424. https://doi.org/10.1021/acsapm.8b00139

    Article  CAS  Google Scholar 

  51. Hasanabadi N, Nazockdast H, Gajewska B, Balog S, Gunkel I, Bruns N, Lattuada M (2017) Structural behavior of cylindrical polystyrene-block-poly (ethylene-butylene)—block-polystyrene (SEBS) triblock copolymer containing MWCNTs: On the influence of nanoparticle surface modification. Macromole Chem Phys 218:1700231. https://doi.org/10.1002/macp.201700231

    Article  CAS  Google Scholar 

  52. Kitagawa Y, Yoshida K, Takase K, Valanezhad A, Watanabe I, Kojio K, Murata H (2020) Evaluation of viscoelastic properties, hardness, and glass transition temperature of soft denture liners and tissue conditioner. Odontology 108:366–375. https://doi.org/10.1007/s10266-019-00477-9

    Article  CAS  PubMed  Google Scholar 

  53. Mark JE (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  54. Lu F, Liu T, Wang F, Mai YL, Li DY (2020) Effect of Organo-Modified Montmorillonite on the Morphology and Properties of SEBS/TPU Nanocomposites. Polym Eng Sci 60:850–859. https://doi.org/10.1002/pen.25344

    Article  CAS  Google Scholar 

  55. Yilgör I, McGrath JE (1988) Polysiloxane containing copolymers: a survey of recent developments. in: Polysiloxane Copolymers/Anionic Polymerization. Advances in Polymer Science, Springer, Berlin. Doi: https://doi.org/10.1007/BFb0025274

  56. Passaglia E, Ghetti S, Picchioni F, Ruggeri G (2000) Grafting of diethyl maleate and maleic anhydride onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS). Polymer 41:4389–4400. https://doi.org/10.1016/S0032-3861(99)00696-5

    Article  CAS  Google Scholar 

  57. Jalali-Arani A, Katbab AA, Nazockdast H (2005) Thermomechanical reactive blending of silicone rubber and LLDPE: Effects of processing parameters. J Appl Polym Sci 96:155–161. https://doi.org/10.1002/app.21138

    Article  CAS  Google Scholar 

  58. Mohanty S, Santra RN, Nando GB (1997) Reactive blending of ethylene-methylacrylate copolymer and poly-dimethyl siloxane rubber: kinetics studies from infrared spectroscopy. Adv Polym Technol 16:323–329. https://doi.org/10.1002/(SICI)1098-2329(199711)16:4%3c323::AID-ADV6%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  59. Santra RN, Roy S, Bhowmick AK, Nando GB (1993) Studies on miscibility of blends of ethylene methyl acrylate and polydimethyl siloxane rubber. Polym Eng Sci 33:1352–1359. https://doi.org/10.1002/pen.760332008

    Article  CAS  Google Scholar 

  60. Zhang C, Pal K, Byeon U, Han M, Kim K (2011) A study on mechanical and thermal properties of silicone rubber/EPDM damping materials. J Appl Polym Sci 119:2737–2741. https://doi.org/10.1002/app.31697

    Article  CAS  Google Scholar 

  61. Han R, Wang Z, Zhang Y, Niu K (2019) Thermal stability of CeO2/graphene/phenyl silicone rubber composites. Polym Test 75:277–283. https://doi.org/10.1016/j.polymertesting.2019.02.027

    Article  CAS  Google Scholar 

  62. Woods ME, Mass TR (1975) Fundamental considerations for the covulcanization of elastomer blends. in: Platzer NAJ (ed) Copolymers, Polyblends, and Composites. American chemical Society, Washington DC

  63. Wu J, Bo C, Wang Y, Su B, Liu Q, Zhao J (2015) Effect of curing time on mechanical and dynamic mechanical properties of butyl rubber. Mater Res Innov 19(S6):148–152. https://doi.org/10.1179/1432891715Z.0000000001468

    Article  CAS  Google Scholar 

  64. Abral H, Fajrul R, Mahardika M, Handayani D, Sugiarti E, Muslimin AN, Rosanti SD (2020) Improving impact, tensile and thermal properties of thermoset unsaturated polyester via mixing with thermoset vinyl ester and methyl methacrylate. Polym Test 81:106193. https://doi.org/10.1016/j.polymertesting.2019.106193

    Article  CAS  Google Scholar 

  65. Parameswaranpillai J, Jose S, Siengchin S, Hameed N (2017) Phase morphology, mechanical, dynamic mechanical, crystallization, and thermal degradation properties of PP and PP/PS blends modified with SEBS elastomer. Int J Plast Technol 21:79–95. https://doi.org/10.1007/s12588-017-9172-9

    Article  CAS  Google Scholar 

  66. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, Shen C (2020) Biodegradable poly (lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol 151:628–634. https://doi.org/10.1016/j.ijbiomac.2020.02.209

    Article  CAS  PubMed  Google Scholar 

  67. Wang TT, Huang P, Li TQ, Hu N, Fu SY (2019) Epoxy nanocomposites significantly toughened by both poly (sulfone) and graphene oxide. Compos Commun 14:55–60. https://doi.org/10.1016/j.coco.2019.05.007

    Article  Google Scholar 

  68. Clarson SJ, Dodgson K, Semlyen JA (1985) Studies of cyclic and linear poly (dimethylsiloxanes): glass transition temperatures and crystallization behavior. Polymer 26:930–934. https://doi.org/10.1016/0032-3861(85)90140-5

    Article  CAS  Google Scholar 

  69. Balaji AB, Ratnam CT, Khalid M, Walvekar R (2017) Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend. Radiat Phys Chem 141:179–189. https://doi.org/10.1016/j.radphyschem.2017.07.001

    Article  CAS  Google Scholar 

  70. Kole S, Bhattacharya A, Tripathy DK, Bhowmick AK (1993) Influence of curative, filler, compatibilizer, domain size, and blend ratio on the dynamic mechanical properties of silicone–EPDM blends. J Appl Polym Sci 48:529–545. https://doi.org/10.1002/app.1993.070480317

    Article  CAS  Google Scholar 

  71. Parameswaranpillai J, Joseph G, Shinu KP, Salim NV, Hameed N, Jose S (2017) High performance PP/SEBS/CNF composites: Evaluation of mechanical, thermal degradation, and crystallization properties. Polym Compos 38:2440–2449. https://doi.org/10.1002/pc.23830

    Article  CAS  Google Scholar 

  72. Kim JC, Chang YW, Sabzi M (2021) Designing self-crosslinkable ternary blends using epoxidized natural rubber (ENR)/poly (ethylene-co-acrylic acid)(EAA)/poly (ε-caprolactone)(PCL) demonstrating triple-shape memory behavior. Eur Polym J 152:110488. https://doi.org/10.1016/j.eurpolymj.2021.110488

    Article  CAS  Google Scholar 

  73. Kunjappan AM, Reghunadhan A, Ramachandran AA, Mathew L, Padmanabhan M, Laroze D, Thomas S (2021) Discussion on degree of entanglement, chain confinement, and reinforcement efficiency factor of PTT/PE blend nanocomposite embedded with MWCNTs. Polym Adv Technol 32:2916. https://doi.org/10.1002/pat.5303

    Article  CAS  Google Scholar 

  74. Jeddi J, Katbab A, Mehranvari M (2019) Investigation of microstructure, electrical behavior, and EMI shielding effectiveness of silicone rubber/carbon black/nanographite hybrid composites. Polym Compos 40:4056–4066. https://doi.org/10.1002/pc.25266

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhani, E., Mohammadi, M. & Sabzi, M. Preparation and study of mechanical and thermal properties of silicone rubber/poly(styrene–ethylene butylene–styrene) triblock copolymer blends. Polym. Bull. 80, 7991–8012 (2023). https://doi.org/10.1007/s00289-022-04440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04440-7

Keywords

Navigation