Skip to main content
Log in

Broadband dielectric dispersion (20 Hz–1 GHz) and relaxation, crystalline structure, and thermal characterization of PVDF/PMMA blend films

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer blend films consisted of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) (compositional ratios of PVDF/PMMA = 100/0, 80/20, 60/40, 40/60, 20/80, and 0/100 wt/wt%) were prepared by solution casting method. These PVDF/PMMA blend films were characterized by employing an X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, differential scanning calorimeter, and broadband dielectric relaxation spectroscopy. The PVDF crystal phases formed in these polymer blends were explained and their crystallite sizes, degree of crystallinity, and melting temperatures were determined. The dielectric dispersion study over the broadband frequency range of 20 Hz–1 GHz confirmed the decrease in dielectric permittivity with increased frequency of the applied harmonic electric field and it changed anomalously when the PVDF/PMMA blend compositional ratio varied. Dielectric loss tangent spectra illustrated the blend composition-dependent PVDF chain segmental relaxation process in these polymer blends which appeared in the radio frequency region. The alternating current electrical conductivity spectra revealed the increase in conductivity with increased frequency, and at a fixed frequency, the conductivity showed a variation in one order of magnitude with the variation in the blend composition ratio over the entire range. The experimental results highlighted that these PVDF/PMMA blend films could be used as frequency tunable dielectrics and insulating materials for advances in next-generation flexible device technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan DQ (2020) The search for enhanced dielectric strength of polymer-based dielectric: a focused review on polymer nanocomposites. J Appl Polym Sci 137:49379

    CAS  Google Scholar 

  2. Rajeevan S, John S, Georage SC (2021) Polyvinylidene fluoride: a multifunctional polymer in supercapacitor applications. J Power Sour 504:230037

    CAS  Google Scholar 

  3. Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors; synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    CAS  PubMed  Google Scholar 

  4. Zha JW, Zheng MS, Fan BH, Dang ZM (2021) Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89:106438

    CAS  Google Scholar 

  5. Behera R, Elanseralathan K (2022) A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications. J Energy Storage 48:103788

    Google Scholar 

  6. Olariu MA, Hamciuc C, Neacsu OM, Hamciuc E, Dimitrov L (2019) Microwave dielectric properties of polyimide composites based on TiO2 nanotubes and carbon nanotubes. Dig J Nanomater Biostruct 14:37–44

    Google Scholar 

  7. Singha S, Thomas MJ (2008) Permittivity and tan delta characteristic of epoxy nanocomposites in the frequency range of 1 MHz−1 GHz. IEEE Trans Dielectr Electr Insul 15:2–11

    CAS  Google Scholar 

  8. Zhou W, Li T, Yuan M, Li B, Zhong S, Li Z, Liu X, Zhou J, Wang Y, Cai H, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core–shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater 42:1–11

    CAS  Google Scholar 

  9. Jeon H, Jin S, Shin KY (2022) Highly flexible, high-performance radio-frequency antenna based on free-standing graphene/polymer nanocomposite film. Appl Surf Sci 582:152455

    CAS  Google Scholar 

  10. Sengwa RJ, Dhatarwal P (2021) PVA/MMT and (PVA/PVP)/MMT hybrid nanocomposites for broad-range radio frequency tunable nanodielectric applications. Mater Lett 299:130081

    CAS  Google Scholar 

  11. Sengwa RJ, Dhatarwal P (2022) Toward multifuctionalilty of PEO/PMMA/MMT hybrid polymer nanocomposites: promising morphological, nanostructural, thermal, broadband dielectric, and optical properties. J Phys Chem Solids 166:110708

    CAS  Google Scholar 

  12. Sengwa RJ, Dhatarwal P (2022) Crystalline phases thermal behaviour and radio frequencies dielectric properties of PVDF/PEO/metal oxides hybrid polymer nanocomposites films. J Polym Res 29:186

    CAS  Google Scholar 

  13. Dhatarwal P, Sengwa RJ (2022) Crystalline phases thermal behaviour, optical energy band gap, and broadband radio wave frequency dielectric properties of PEO/PVDF blend films. Macromol Res 30:460–469

    CAS  Google Scholar 

  14. Chen S, Chen S, Qiao R, Xu H, Liu Z, Luo H, Zhang D (2021) Enhanced dielectric constant of PVDF-based nanocomposites with one dimensional core-shell polypyrrole/sepiolite nanofibers. Compos A Appl Sci Manuf 145:106384

    CAS  Google Scholar 

  15. Sengwa RJ, Dhatarwal P (2021) Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies. J Mater Sci Mater Electron 32:9661–9674

    CAS  Google Scholar 

  16. Dhatarwal P, Sengwa RJ (2019) Impact of PVDF/PEO blend composition on the β-phase crystallization and dielectric properties of silica nanoparticles incorporated polymer nanocomposites. J Polym Res 26:196

    Google Scholar 

  17. Brunengo E, Conzatti L, Schizzi I, Buscaglia MT, Canu G, Curecheriu L, Costa C, Castellano M, Mitoseriu L, Stagnaro P, Buscaglia V (2021) Improved dielectric properties of poly(vinylidene fluoride)–BaTiO3 composites by solvent-free processing. J Appl Polym Sci 138:50049

    CAS  Google Scholar 

  18. El-Sayed S, Farag ZR, Saber S (2020) Dielectric relaxations and optical properties of polyvinylidene fluoride/chitosan films. AIP Adv 10:095127

    CAS  Google Scholar 

  19. Kumar N, Sengwa RJ, Dhatarwal P, Saraswat M (2022) Effectively polymer composition controllable optical properties of PVDF/PMMA blend films for advances in flexible devices technologies. Indian J Eng Mater Sci 29:169–180

    CAS  Google Scholar 

  20. Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC (2019) Polyvinylidene fluoride/magnetic nanocomposites: dielectric and thermal response. J Phys Chem Solids 129:378–386

    CAS  Google Scholar 

  21. Dhatarwal P, Sengwa RJ (2019) Polymer compositional ratio-dependent morphology, crystallinity, dielectric dispersion, structural dynamics, and electrical conductivity of PVDF/PEO blend films. Macromol Res 27:1009–1023

    CAS  Google Scholar 

  22. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706

    CAS  Google Scholar 

  23. Chiu FC, Chen CC, Chen YJ (2014) Binary and ternary nanocomposites based on PVDF, PMMA, and PVDF/PMMA blends: polymorphism, thermal, and rheological properties. J Polym Res 21:378

    Google Scholar 

  24. Zhao X, Chen S, Zhang J, Zhang W, Wang X (2011) Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: special “orientation” behavior, morphology, and thermal properties. J Cryst Growth 328:74–80

    CAS  Google Scholar 

  25. Qiu J, Gu Q, Sha Y, Huang Y, Zhang M, Luo Z (2022) Preparation and application of dielectric polymers with high permittivity and low energy loss: a mini review. J Appl Polym Sci 139:52367

    CAS  Google Scholar 

  26. Liu Y, Gao J, Yao R, Zhang Y, Zhao T, Tang C, Zhong L (2020) Enhanced energy storage performance in a PVDF/PMMA/TiO2 blending nanodielectric material. Mater Chem Phys 250:123155

    CAS  Google Scholar 

  27. Mishra J, Tiwari SK, Abolhasani MM, Azimi S, Nayak GC (2017) Fundamental of polymer blends and its thermodynamics. In: Thomas S, Mishra R, Kalarikkal N (eds) Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Woodhead Publishing, Sawston, pp 27–55

    Google Scholar 

  28. Shi Z, Ma X, Zhao G, Wang G, Zhang L, Li B (2020) Fabrication of high porosity nanocellular polymer foams based on PMMA/PVDF blends. Mater Des 195:109002

    CAS  Google Scholar 

  29. Abolhasani MM, Arani AJ, Nazockdast H, Guo Q (2013) Poly(vinylidene fluoride)-acrylic rubber partially miscible blends: crystallization within conjugated phases induce dual lamellar crystalline structure. Polymer 54:4686–4701

    CAS  Google Scholar 

  30. Weng Z, Wu M, Ren Q, Li W, Zhu X, Wang L, Li H, Zheng W (2022) Achieving low-thermal conductivity and high β phase in PVDF/PMMA blend foams via low-pressure microcellular foaming. J Appl Polym Sci 139:52338

    CAS  Google Scholar 

  31. Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A (2019) On the miscibility of PVDF/PMMA polymer blends: thermodynamics, experimental and numerical investigations. Polym Test 73:222–231

    CAS  Google Scholar 

  32. Yang JH, Zhang YS, Xue F, Liu DF, Zhang N, Huang T, Wang Y (2021) Structural relaxation and dielectric response of PVDF/PMMA blend in the presence of graphene oxide. Polymer 229:123998

    CAS  Google Scholar 

  33. Mohammed MI, Khafagy RM, Hussien MSA, Sakr GB, Ibrahim MA, Yahia IS, Zahran HY (2022) Enhancing the structural, optical, electrical, properties and photocatalytic applications of ZnO/PMMA nanocomposite membranes: towards multifunctional membranes. J Mater Sci Mater Electron 33:1977–2002

    CAS  Google Scholar 

  34. Sengwa RJ, Dhatarwal P (2021) Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: a comparative study of structural, optical, and dielectric properties for multifunctional technological applications. Opt Mater 113:110837

    CAS  Google Scholar 

  35. Zhou Y, Liu Q, Chen F, Sun X, Li S, Guo J, Zhao Y, Yang Y, Xu J (2021) Gradient dielectric constant sandwich-structured BaTiO3/PMMA nanocomposites with strengthened energy density and ultralow-energy loss. Ceram Int 47:5112–51222

    CAS  Google Scholar 

  36. Muller O, Hege C, Guerchoux M, Merlat L (2022) Synthesis, characterization and nonlinear optical properties of polylactide and PMMA based azophloxine nanocomposites for optical limiting applications. Mater Sci Eng B 276:115524

    CAS  Google Scholar 

  37. Dhatarwal P, Choudhary S, Sengwa RJ (2021) Dielectric and optical properties of alumina and silica nanoparticles dispersed poly(methyl methacrylate) matrix-based nanocomposites for advanced polymer technologies. J Polym Res 28:63

    CAS  Google Scholar 

  38. Dhatarwal P, Sengwa RJ (2020) Tunable β-phase crystals, degree of crystallinity, and dielectric properties of three-phase PVDF/PEO/SiO2 hybrid polymer nanocomposites. Mater Res Bull 129:110901

    CAS  Google Scholar 

  39. Xia J, Zheng Z, Guo Y (2022) Mechanically and electrically robust, electro-spun PVDF/PMMA blend films for durable triboelectric nanogenerators. Compos Par A 157:106914

    CAS  Google Scholar 

  40. Li Y, Zhang G, Song S, Xu H, Pan M, Zhong GJ (2017) How chain intermixing dictates the polymorphism of PVDF in poly(vinylidene fluoride)/polymethylmethacrylate binary system during recrystallization: a comparative study on core–shell particles and latex blend. Polymers 9:448

    PubMed  PubMed Central  Google Scholar 

  41. Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM (2015) Crystalline polymorphism in poly(vinylidene fluoride) membranes. Prog Polym Sci 51:94–126

    CAS  Google Scholar 

  42. Meng Q, Li W, Zheng Y, Zhang Z (2010) Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J Appl Polym Sci 116:2674–2684

    CAS  Google Scholar 

  43. Afonso E, Gómez AM, Tiemblo P, Garcia N (2021) Industrially viable method for producing all-polymer hydrophobic surfaces apt for slippery liquid-infused substrates. Appl Surf Sci 535:147728

    CAS  Google Scholar 

  44. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389

    CAS  Google Scholar 

  45. Elashmawi IS, Hakeem NA (2008) Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci 48:895–901

    CAS  Google Scholar 

  46. Satapathy S, Pawar S, Gupta PK, Varma KBR (2011) Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34:727

    CAS  Google Scholar 

  47. Namouchi F, Smaoui H, Fourati N, Zerrouki C, Guermazi H, Bonnet JJ (2009) Investigation on electrical properties of thermally aged PMMA by combined use of FTIR and impedance spectroscopies. J Alloys Compd 469:197–202

    CAS  Google Scholar 

  48. Rai VN, Mukherjee C, Jain B (2017) UV-Vis and FTIR spectroscopy of gamma irradiated polymethylmethacrylate. Indian J Pure Appl Phys 55:775–785

    Google Scholar 

  49. Veitmann M, Chapron D, Bizet S, Devisme S, Guilment J, Royaud I, Poncot M, Bourson P (2015) Thermal behavior of PVDF/PMMA blends by differential scanning calorimetry and vibrational spectroscopies (Raman and Fourier transform infrared). Polym Test 48:120–124

    CAS  Google Scholar 

  50. Gregorio RG, Nociti NCPDS (1995) Effect of PMMA addition on the solution crystallization of the alpha and beta phases of poly(vinylidene fluoride) (PVDF). J Phys D 28:432–436

    CAS  Google Scholar 

  51. Dhatarwal P, Sengwa RJ (2021) Superior optical and dielectric properties of ultrasonic-assisted solution-cast prepared PMMA/MMT nanocomposite films. Funct Compos Struct 3:025008

    CAS  Google Scholar 

  52. Koseki Y, Aimi K, Ando S (2012) Crystalline structure and molecular mobility of PVDF chains in PVDF/PMMA blend films analysed by solid-state 19F MAS NMR spectroscopy. Polym J 44:757–763

    CAS  Google Scholar 

  53. Mazuki NF, Nagao Y, Kufian MZ, Samsudin AS (2022) The influences of PLA into PMMA on crystallinity and thermal properties enhancement-based hybrid polymer in gel properties. Mater Today Proc 49:3105–3111

    CAS  Google Scholar 

  54. Freire E, Bianchi O, Monteiro EEC, Nunes RCR, Forte MC (2009) Processability of PVDF/PMMA blends studied by torque rheometry. Mater Sci Eng C 29:657–661

    CAS  Google Scholar 

  55. Pawde SM, Deshmukh K (2009) Investigation of the structural, thermal, mechanical, and optical properties of poly(methyl methacrylate) and poly(vinylidene fluoride) blends. J Appl Polym Sci 114:2169–2179

    CAS  Google Scholar 

  56. Zhang Y, Liu Y, Tang C, Yao R, Fan Y, Gao J, Zhong L (2020) Enhanced thermal stability of electrical properties in PVDF/PMMA blend. In: IEEE conference on electrical insulation dielectric phenomena, 188−191

  57. Lei C, Wang X, Tu D, Wang H, Du Q (2009) Charge distribution in PVDF/PMMA blends under DC field. Mater Chem Phys 114:272–278

    CAS  Google Scholar 

  58. Song H, Yang S, Sun S, Zhang H (2013) Effect of miscibility and crystallization on the mechanical properties and transparency of PVDF/PMMA blends. Polym Plast Technol Eng 52:221–227

    CAS  Google Scholar 

  59. Abaci U, Guney HY, Yilmazoglu M (2021) Plasticizer effect on dielectric properties of poly(methyl methacrylate)/titanium dioxide composites. Polym Polym Compos 29:S565–S574

    CAS  Google Scholar 

  60. Lavina S, Negro E, Pace G, Gross S, Depaoli G, Vidali M, Noto VD (2007) Dielectric low-k composite films based on PMMA, PVC and methylsiloxane-silica: synthesis, characterization and electrical properties. J Non-Cryst Solids 353:2878–2888

    CAS  Google Scholar 

  61. Yu K, Wang H, Zhou Y, Bai Y, Niu Y (2013) Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys 113:034105

    Google Scholar 

  62. Wang HQ, Wang JW, Wang XZ, Gao XH, Zhuang GC, Yang JB, Ren H (2022) Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem Eng J 437:135431

    CAS  Google Scholar 

  63. Feng Y, Deng Q, Peng C, Wu Q (2019) High dielectric and breakdown properties achieved in ternary BaTiO3/MXene/PVDF nanocomposites with low-concentration fillers from enhanced interface polarization. Ceram Int 45:7923–7930

    CAS  Google Scholar 

  64. Clark AG, Montero MS, Govinna ND, Lounder SJ, Asatekin A, Cebe P (2020) Relaxation dynamics of blends of PVDF and zwitterionic copolymer by dielectric relaxation spectroscopy. J Polym Sci 58:1311–1324

    CAS  Google Scholar 

  65. Dhatarwal P, Sengwa RJ, Choudhary S (2022) Broadband radio frequency dielectric permittivity and electrical conductivity of dispersed tin oxide and silica nanoparticles in poly(ethylene oxide)/poly(methyl methacrylate) blend matrix-based nanocomposites for nanodielectric applications. J Macromol Sci B Phys 61:111–120

    CAS  Google Scholar 

  66. Sengwa RJ, Dhatarwal P (2022) Thermally improved crystalline phase and intercalated PEO/OMMT nanocomposites for high to ultrahigh radio frequency range low-permittivity nanodielectrics. J Appl Polym Sci 139:51599

    CAS  Google Scholar 

  67. Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposites electrolytes. J Phys Chem Solids 75:765–774

    CAS  Google Scholar 

  68. Alrooqi A, Al-Amshany ZM, Al-Harbi LM, Altalhi TA, Refat MS, Hassanien AM, Atta AA (2022) Impact of charge transfer complex on the dielectric relaxation processes in poly(methyl methacrylate) polymer. Molecules 27:1993

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fahmy T, Elzanaty H (2019) AC conductivity and broadband dielectric spectroscopy of a poly(vinyl chloride)/poly(ethyl methacrylate) polymer blend. Bull Mater Sci 42:220

    Google Scholar 

Download references

Acknowledgements

The University Grants Commission, New Delhi, is gratefully acknowledged for the experimental grant through SAP DRS-II Project Grant [No. F.530/12/DRS-II/2016(SAP-I)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Sengwa, R.J. Broadband dielectric dispersion (20 Hz–1 GHz) and relaxation, crystalline structure, and thermal characterization of PVDF/PMMA blend films. Polym. Bull. 80, 12021–12046 (2023). https://doi.org/10.1007/s00289-022-04632-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04632-1

Keywords

Navigation