Skip to main content
Log in

Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The addition of iron oxide nanoparticles (IONP) tends to agglomerate easily, and thus it is hard to obtain a uniform and well-dispersed particle nitrile rubber matrix (NBR). IONP was synthesized via the precipitation method, coated with fatty acid to produce coated IONP (C-IONP) before being compounded with NBR latex at 0 to 20 phr loading. The good interaction of C-IONP and NBR matrix was established by the formation of significant FTIR peaks at 1710 and 565 cm−1 presented as C=O and Fe–O bands, respectively. Mechanical performance analysis by universal testing machine demonstrated that the tensile stress of NBR 15 and 20 increased dramatically as compared to neat NBR attributed to filler–filler interaction in C-IONP. Meanwhile, the lower tensile strength increment rate of NBR 5 and 10 than neat NBR was due to the presence of C-IONP which increased the strain by more than 700%, with well particle distribution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brigandi PJ, Sengupta S, Weinhold J, Reffner JR (2021) Material properties and phase behavior of crosslinkable acrylonitrile-butadiene copolymer/ethylene vinyl acetate/carbon black composites. Polym Compos 42(5):2360–2369

    Article  CAS  Google Scholar 

  2. Qiu J, Wang H, Shao J, Zhang K, Wu J, Yan L (2021) S4-containing hyperbranched polymer modified graphene oxide as strong linker for both rubber and carbon black to enhance the crosslinking and mechanical properties of nitrile butadiene rubber. Chem Eng J 417:129336

    Article  CAS  Google Scholar 

  3. Szadkowski B, Marzec A, Zaborski M (2020) Use of carbon black as a reinforcing nano-filler in conductivity-reversible elastomer composites. PolymeTest 81:106222

    CAS  Google Scholar 

  4. Kumar VN (2022) Effect of surfactant on swelling behavior and mechanical characterization of NBR-nano-silica nanocomposites. SILICON 14(4):1865–1871

    Article  CAS  Google Scholar 

  5. El-Sabbagh SH, Ahmed NM, Mahmoud DS, Mohamed WS (2020) Silica and modified silica fume waste (mSF) as reinforcing fillers for rubber industry. Pigment Resin Technology

  6. Karzov I, Nashchokin A, Tikhonov N, Kalugin D, Malakho A (2020) Data on compressibility of NBR samples with various cross-linking degree and zinc oxide content immersed in gasoline and oil. Data Brief 30:105470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Javadi SM (2020) Applications of ZnO and MgO nanoparticles in reducing zinc pollution level in rubber manufacturing processes: a review. Curr Biochem Eng 6(2):103–107

    Article  CAS  Google Scholar 

  8. Han T, Nagarajan S, Zhao H, Sun C, Wen S, Zhao S, Zhang L (2020) Novel reinforcement behavior in nanofilled natural rubber (NR)/butadiene-acrylonitrile rubber (NBR) blends: filling-polymer network and supernanosphere. Polymer 186:122005

    Article  CAS  Google Scholar 

  9. Jose S, Thomas S, Jibin KP, Sisanth KS, Kadam V, Shakyawar DB (2022) Surface modification of wool fabric using sodium lignosulfonate and subsequent improvement in the interfacial adhesion of natural rubber latex in the wool/rubber composites. Ind Crops Prod 177:114489

    Article  CAS  Google Scholar 

  10. Sarath PS, Mahesh TY, Pandey MK, Haponiuk JT, Thomas S, George SC (2022) Tribological performance of ionic liquid modified graphene oxide/silicone rubber composite and the correlation of properties using machine learning methods. Polym Eng Sci 62(5):1473–1484

    Article  Google Scholar 

  11. Dileep P, Jacob S, Chandra CS, Dominic CD, Poornima MP, Rappai JP, Narayanankutty SK (2022) Functionalized nanosilica for vulcanization efficiency and mechanical properties of natural rubber composites. SILICON 14(8):4411–4422

    Article  CAS  Google Scholar 

  12. Iranbakhsh A, Ghaderi A (2020) The effect of nano-iron oxide on growth, physiology, and callogenesis in pepper in vitro. Nova Bio Reperta 7(2):219–227

    Article  Google Scholar 

  13. Kruželák J, Kvasničáková A, Bochkarev ES, Tuzhikov OO, Gořalík M, Vilčáková J, Hudec I (2021) Cross-linking, mechanical, dynamical, and EMI absorption shielding effectiveness of NBR based composites filled with combination on ferrite and carbon based fillers. Polym Adv Technol 32(8):2929–2939

    Article  Google Scholar 

  14. Fontes WC, Franco de Carvalho JM, Defaveri K, Brigolini GJ, Segadães AM, Peixoto RA (2021) Hydraulic tiles produced with fine aggregates and pigments reclaimed from iron ore tailings. J Sustain Metal 7(1):151–165

    Article  Google Scholar 

  15. Kobyliukh A, Olszowska K, Szeluga U, Pusz S (2020) Iron oxides/graphene hybrid structures–preparation, modification, and application as fillers of polymer composites. Adv Colloids Interf Sci 285:102285

    Article  CAS  Google Scholar 

  16. Zhang Y, Yi Z, Wei L, Kong L, Wang L (2018) Modified iron phosphate/polyvinyl alcohol composite film for controlled-release fertilisers. RSC Adv 8(32):18146–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arsalani S, Guidelli EJ, Araujo JF, Bruno AC, Baffa O (2018) Green synthesis and surface modification of iron oxide nanoparticles with enhanced magnetization using natural rubber latex. ACS Sus Chem Eng 6(11):13756–13765

    Article  CAS  Google Scholar 

  18. Ong HT, Suppiah DD, Julkapli NM (2020) Fatty acid coated iron oxide nanoparticle: effect on stability, particle size and magnetic properties. Colloids Surf A 606:125371

    Article  CAS  Google Scholar 

  19. Gill YQ, Mehdi SMH, Mehmood U (2022) Enhancement of polylactide/poly (butylene adipate-co-terephthalate) blend [ECOVIO] properties by carboxylated nitrile butadiene rubber (XNBR) addition for smart packaging applications. Mater Lett 306:130881

    Article  CAS  Google Scholar 

  20. Mishra D, Arora R, Lahiri S, Amritphale SS, Chandra N (2014) Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot Met Phys Chem Surf 50(5):628–631

    Article  CAS  Google Scholar 

  21. Wijesinghe HGIM, Etampawala TNB, Edirisinghe DG, Gamlath GRVS, Wadugodapitiya RRWMUGK, Bandara TARWMMCG (2022) Properties of rice husk ash silica filled natural rubber and acrylonitrile-butadiene rubber blends. J Agric Sci–Sri Lanka 17(1)

  22. Yang D, Wei Q, Yu L, Zhao C, Zhang L (2022) Enhanced thermal conductivity and mechanical properties of polymeric composites through formation of covalent bonds between boron nitride and rubber chains. Polym Adv Technol 33(1):212–220

    Article  CAS  Google Scholar 

  23. Abdelsalam AA, El-Sabbagh SH, Mohamed WS, Li J, Wang L, Ismail H, Khozami MA (2022) Effect of compatibilisers on the cure characteristics and mechanical properties of ternary rubber blend composites. Pigment Resin Technol

  24. Liu X, Fu Y, Zhou D, Chen H, Li Y, Song J, Wang H (2022) Hydrogenation of carboxyl nitrile butadiene rubber latex using a ruthenium-based catalyst. Catalysts 12(1):97

    Article  CAS  Google Scholar 

  25. Sadek EM, Ahmed SM, El-Nashar DE, Mansour NA (2022) Effect of modified graphite nanoflakes on curing, mechanical and dielectric properties of nitrile rubber nanocomposites. Polym Bull, 1–17

  26. Li MC, Zhang Y, Cho UR (2014) Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Mater Des 63:565–574

    Article  CAS  Google Scholar 

  27. Wisittanawat U, Thanawan S, Amornsakchai T (2014) Mechanical properties of highly aligned short pineapple leaf fiber reinforced–nitrile rubber composite: effect of fiber content and bonding agent. Polym Test 35:20–27

    Article  CAS  Google Scholar 

  28. da Rocha EBD, Linhares FN, Gabriel CFS, de Sousa AMF, Furtado CRG (2018) Stress relaxation of nitrile rubber composites filled with a hybrid metakaolin/carbon black filler under tensile and compressive forces. Appl Clay Sci 151:181–188

    Article  Google Scholar 

  29. Mostafa A, Abouel-Kasem A, Bayoumi MR, El-Sebaie MG (2009) The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Mater Des 30(3):791–795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SATU President Award Research Grant (ST011-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurhidayatullaili Muhd Julkapli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiar, O.H., Julkapli, N.M. Mechanical performance and fracture surface analysis of fatty acid-coated iron oxide-reinforced nitrile butadiene composites. Polym. Bull. 81, 521–533 (2024). https://doi.org/10.1007/s00289-023-04728-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04728-2

Keywords

Navigation