Skip to main content

Advertisement

Log in

Preparation of electrospun cellulose acetate/polyethylene imine bicomponent nanofibers for CO2 capture

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bicomponent nanofibers of cellulose acetate (CA) and polyethylene imine were successfully fabricated by electrospinning technique to capture CO2 gas. The concentration of polyethylene imine was fixed to 25, 50, and 75% compared to the CA concentration. The nanofibers were characterized using FT-IR, X-ray diffraction (XRD) and thermogravimetric analyzer (TGA). The effect of PEI on the morphology of CA nanofibers was studied using scanning electron microscope (SEM). The diameter of electrospun CA/PEI nanofibers becomes larger with the increase of PEI content due to repulsion of electrical force from side polar groups. In addition, PEI diffused on the nanofiber surface was observed at high concentrations of PEI. The CO2 adsorption capacity of electrospun CA/PEI nanofiber membranes was investigated at different temperatures using a BET. The increase of PEI content in nanofibers increased the CO2 adsorption capacity, and the adsorption capacity was larger at lower temperature. The decrease in CO2 adsorption capacity with increasing temperature indicates that CO2 adsorption is more responsible for physisorption. Moreover, the CA/PEI electrospun membrane retains 99% of its initial CO2 adsorption capacity after 5 cycles of the adsorption and desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133(50):20164–20167

    Article  PubMed  CAS  Google Scholar 

  2. Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2021) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 19(1):77–109

    Article  CAS  Google Scholar 

  3. Hong SM, Jang E, Dysart AD, Pol VG, Lee G (2016) CO2 Capture in the sustainable wheat-derived activated microporous carbon compartments. Sci Rep 6(1):34590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lin YF, Syu CR, Huang KW, Lin KYA (2019) Synthesis of silica aerogel membranes using low-cost silicate precursors for carbon dioxide capture. Chem Phys Lett 726:13–17

    Article  CAS  Google Scholar 

  5. Sateesh C, Nandakishora Y, Sahoo RK, Murugan S (2021) Study of cryogenic CO2 capture with solar-assisted VAR system. Clean Eng Technol 5:100351

    Article  Google Scholar 

  6. Wang P, Means N, Shekhawat D, Berry D, Massoudi M (2015) Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review. Energies 8(10):10605–10635

    Article  CAS  Google Scholar 

  7. Chen G, Wang T, Zhang G, Liu G, Jin W (2022) Membrane materials targeting carbon capture and utilization. Adv Membr 2:100025

    Article  Google Scholar 

  8. Sheng J, Zhang M, Xu Y, Yu J, Ding B (2016) Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl Mater Interfaces 8(40):27218–27226

    Article  PubMed  CAS  Google Scholar 

  9. Selatile MK, Ray SS, Ojijo V, Sadiku R (2018) Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv 8(66):37915–37938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Toriello M, Afasari M, Shon HY, Tijing LD (2020) Progress on the fabrication and application of electrospun nanofiber composites. Membranes 10(9):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xu Y, Yuan D, Bao J, Xie Y, He M, Shi Z, Chen S, He C, Zhao W, Zhao C (2018) Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation. J Mater Chem A 6(27):13359–13372

    Article  CAS  Google Scholar 

  12. Osman AI, Hefny M, Abdel MMIA, Elgarahy AM, Rooney DW (2021) Recent advances in carbon capture storage and utilisation technologies: a review. Environ Chem Lett 19(2):797–849

    Article  CAS  Google Scholar 

  13. Li K, Jin S, Wei W, Li X, Li J (2021) Bioinspired hyperbranched protein adhesive based on boronic acid-functionalized cellulose nanofibril and water-soluble polyester. Compos B Eng 219:108943

    Article  CAS  Google Scholar 

  14. Nawaz M, Habib S, Khan A, Shakoor RA, Kahraman R (2020) Cellulose microfibers (CMFs) as a smart carrier for autonomous self-healing in epoxy coatings. New J Chem 44(15):5702–5710

    Article  CAS  Google Scholar 

  15. Silva FAGS, Dourado F, Gama M, Pocas F (2020) Nanocellulose bio-based composites for food packaging. Nanomaterials 10(10):2041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cui X, Lee JJL, Chen WT (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci Rep 9(1):18166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhu M, Cao Q, Liu B, Guo H, Wang X, Han Y, Sun G, Li Y, Zhou J (2020) A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose 27(7):3889–3902

    Article  CAS  Google Scholar 

  18. An S, Jeon B, Bae JH, Kim IS, Paeng K, Kim M, Lee H (2019) Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr Polym 226:115259

    Article  PubMed  Google Scholar 

  19. Lamm ME, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner DJ, Li T, Hu L, Ragauskas AJ, Tekinalp H, Kunc V, Ozcan S (2021) Recent Advances in Functional Materials through Cellulose Nanofiber Templating. Adv Mater 33(12): 2005538

  20. Kalwar K, Ming S (2019) Electrospun cellulose acetate nanofibers and Au@AgNPs for antimicrobial activity - a mini review. Nanotechnol Rev 8(1):246–257

    Article  CAS  Google Scholar 

  21. Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27(11):2419–2427

    Article  CAS  Google Scholar 

  22. Emam HE, Darwesh OM, Abdelhameed RM (2020) Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole frameworks. Ind Eng Chem Res 59(23):10931–10944

    Article  CAS  Google Scholar 

  23. Emam HE, Shaheen TI (2022) Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohyd Polym 278:118925

    Article  CAS  Google Scholar 

  24. Xu X, Myers MB, Versteeg FG, Pejcic B, Heath C, Wood CD (2020) Direct air capture (DAC) of CO2 using polyethylenimine (PEI) “snow”: a scalable strategy. Chem Commun 56(52):7151–7154

    Article  CAS  Google Scholar 

  25. Choi W, Min K, Kim C, Ko YS, Jeon JW, Seo H, Park YK, Choi M (2016) Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption. Nat Commun 7(1):12640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. He Y, Xia Y, Zhao J, Song Y, Yi L, Zhao L (2019) One-step fabrication of PEI-modified GO particles for CO2 capture. Appl Phys A 125(3):160

    Article  CAS  Google Scholar 

  27. Irani V, Khosh AG, Tavasoli A (2020) Polyethyleneimine (PEI) Functionalized metal oxide nanoparticles recovered from the catalytic converters of spent automotive exhaust systems and application for CO2 adsorption. Front Energy Res 8:196

  28. Shen X, Du H, Mullins RH, Kommalapati RR (2017) Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work. Energy Technol 5(6):822–833

    Article  CAS  Google Scholar 

  29. Wan X, Lu X, Liu J, Pan Y, Xiao H (2019) Impregnation of PEI in novel porous MgCO3 for carbon dioxide capture from flue gas. Ind Eng Chem Res 58(12):4979–4987

    Article  CAS  Google Scholar 

  30. Xie Z, Yan G, Tang K, Ding CF (2022) Post-synthesis modification of covalent organic frameworks for ultrahigh enrichment of low-abundance glycopeptides from human saliva and serum. Talanta 236:122831

    Article  PubMed  CAS  Google Scholar 

  31. Yang J, Zhang P, Tang L, Sun P, Liu W, Sun P, Zuo A, Liang D (2010) Temperature-tuned DNA condensation and gene transfection by PEI-g-(PMEO2MA-b-PHEMA) copolymer-based nonviral vectors. Biomaterials 31(1):144–155

    Article  PubMed  Google Scholar 

  32. Zaarour B, Zhu L, Jin X (2020) A review on the secondary surface morphology of electrospun nanofibers: formation mechanisms, characterizations, and applications. ChemistrySelect 5(4):1335–1348

    Article  CAS  Google Scholar 

  33. Pal S, Srivastava RK, Nandan B (2021) Effect of spinning solvent on crystallization behavior of confined polymers in electrospun nanofibers. Polym Cryst 6:e10209

    Google Scholar 

  34. Philip P, Tomlal JE, Chacko JK, Philip KC, Thomas PC (2019) Preparation and characterisation of surface roughened PMMA electrospun nanofibers from PEO - PMMA polymer blend nanofibers. Polym Test 74:257–265

    Article  CAS  Google Scholar 

  35. Hou JZ, Xue HL, Li LL, Dou YL, Wu ZN, Zhang PP (2016) Fabrication and morphology study of electrospun cellulose acetate/polyethylenimine nanofiber. Polym Bull 73(10):2889–2906

    Article  CAS  Google Scholar 

  36. Kriegel C, Kit KM, Weiss MDJ (2009) Nanofibers as carrier systems for antimicrobial microemulsions part i: fabrication and characterization. Langmuir 25(2):1154–1161

    Article  PubMed  CAS  Google Scholar 

  37. Fang X, Ma H, Xiao S, Shen M, Guo R, Cao X, Shi X (2011) Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J Mater Chem 21(12):4493–4501

    Article  CAS  Google Scholar 

  38. Liu H, Kuila T, Ku KNH, Lee JH (2013) In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J Mater Chem A 1(11):3739–3746

    Article  CAS  Google Scholar 

  39. Tan M, Feng Y, Wang H, Zhang L, Khan M, Guo J, Chen Q, Liu J (2013) Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromol Res 21(5):541–549

    Article  CAS  Google Scholar 

  40. Salleh WNW, Ismail AF (2012) Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE J 58(10):3167–3175

    Article  CAS  Google Scholar 

  41. Sumisha A, Arthanareeswaran G, Ismail AF, Kumar DP, Shankar MV (2015) Functionalized titanate nanotube–polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv 5(49):39464–39473

    Article  CAS  Google Scholar 

  42. Liu C, Liu H, Lu C, Tang K, Zhang Y (2017) Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties. J Mater Sci 52(19):11715–11724

    Article  CAS  Google Scholar 

  43. Zhu H, Zhang M, Cai S, Cai Y, Wang P, Bao S, Zou M, Du M (2014) In situ growth of Rh nanoparticles with controlled sizes and dispersions on the cross-linked PVA–PEI nanofibers and their electrocatalytic properties towards H2O2. RSC Adv 4(2):794–804

    Article  CAS  Google Scholar 

  44. Zainab G, Babar AA, Ali N, Aboalhassan AA, Yu J, Ding B (2020) Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption. J Colloid Interface Sci 561:659–667

    Article  PubMed  CAS  Google Scholar 

  45. Huang CL, Wang PY, Li YY (2020) Fabrication of electrospun CO2 adsorption membrane for zinc-air battery application. Chem Eng J 395:125031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20224000000440, Sector Coupling Energy Industry Advancement Manpower Training Program)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Geun Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Lee, J. & Oh, SG. Preparation of electrospun cellulose acetate/polyethylene imine bicomponent nanofibers for CO2 capture. Polym. Bull. 81, 1389–1401 (2024). https://doi.org/10.1007/s00289-023-04773-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04773-x

Keywords

Navigation