Skip to main content

Advertisement

Log in

The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Increasing evidence indicates that the anti-malarial agent artemisinin and its derivatives may exert anti-angiogenic effect. In the present study, we explored the effect of artesunate, a artemisinin derivative, on TNFα- and hypoxia-induced expression of hypoxia inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) and inteleukin-8 (IL-8) in human rheumatoid arthritis fibroblast-like synoviocytes (RA FLS), and further investigated the signal mechanism by which this compound modulates HIF-1α, VEGF and IL-8 expression. RA FLS obtained from patients with active rheumatoid arthritis were pretreated with artesunate, and then stimulated with TNFα and hypoxia. Production of VEGF and IL-8 was measured by ELISA. Nuclear location of HIF-1α was measured by confocal fluorescence microscopy. HIF-1α and other signal transduction proteins expression was measured by Western blot. Artesunate decreased the secretion of VEGF and IL-8 from TNFα- or hypoxia-stimulated RA FLS in a dose-dependent manner. Artesunate also inhibited TNFα- or hypoxia-induced nuclear expression and translocation of HIF-1α. We also showed that artesunate prevented Akt phosphorylation, but did not find evidence that phosphorylation of p38 and ERK was affected. TNFα- or hypoxia-induced secretion of VEGF and IL-8 and expression of HIF-1α were hampered by treatment with the PI3 kinase inhibitor LY294002, suggesting that inhibition of PI3 kinase/Akt activation might inhibit VEGF and IL-8 secretion and HIF-1α expression induced by TNFα or hypoxia. Our results suggest that artesunate inhibits angiogenic factor expression in RA FLS, and provide novel evidence that, as a low-cost agent, artesunate may have therapeutic potential for RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45:669–675

    Article  CAS  PubMed  Google Scholar 

  2. Peters CL, Morris CJ, Mapp PI, Blake DR, Lewis CE, Winrow VR (2004) The transcription factors hypoxia-inducible factor1 alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50:291–296

    Article  CAS  PubMed  Google Scholar 

  3. Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F (2005) Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann Rheum Dis 64:971–980

    Article  CAS  PubMed  Google Scholar 

  4. Szekanecz Z, Gaspar L, Koch AE (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10:1739–1753

    Article  CAS  PubMed  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  6. Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79:233–269

    CAS  PubMed  Google Scholar 

  7. Koach AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, Pope RM, Ferrara N (1994) Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152:4149–4156

    Google Scholar 

  8. Fava RA, Olsen NJ, Spencer-Green G et al (1994) Vascular permeability factor/vascular endothelial growth factor: accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180:341–346

    Article  CAS  PubMed  Google Scholar 

  9. Paleolog EM, Fava RA (1998) Angiogenesis in rheumatoid arthritis: implication for future therapeutic strategies. Springer Semin Immunopathol 20:73–94

    Article  CAS  PubMed  Google Scholar 

  10. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor α and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41:1258–1265

    Article  CAS  PubMed  Google Scholar 

  11. Miotla J, Maciewicz R, Kendrew J, Feldmann M, Paleolog EM (2000) Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80:1195–1205

    Article  CAS  PubMed  Google Scholar 

  12. Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1 alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44:1540–1544

    Article  CAS  PubMed  Google Scholar 

  13. Giatromanolaki A, Sivridis E, Maltezos E et al (2003) Upregulated hypoxia inducible factor-1 alpha and -2 alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5:R193–R201

    Article  CAS  PubMed  Google Scholar 

  14. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1 alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  CAS  PubMed  Google Scholar 

  15. Meshnick SR, Taylor TE, Kamchonwongpaisan S (1996) Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev 60:301–315

    CAS  PubMed  Google Scholar 

  16. Haynes RK (2001) Artemisinin and derivatives: the future for malaria treatment? Curr Opin Infect Dis 14:719–726

    CAS  PubMed  Google Scholar 

  17. Huan-huan C, Li-li Y, Shang-bin L (2004) Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell. Cancer Lett 211:163–173

    Article  PubMed  Google Scholar 

  18. Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets 7:407–421

    Article  CAS  PubMed  Google Scholar 

  19. Aldieri E, Atragene D, Bergandi L et al (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-κB activation. FEBS Lett 552:141–144

    Article  CAS  PubMed  Google Scholar 

  20. Zhou WL, Wu JM, Wu QL et al (2005) A novel artemisinin derivative, 3-(12-beta-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo. Acta Pharmacol Sin 26:1352–1358

    Article  CAS  PubMed  Google Scholar 

  21. Lee S (2007) Artemisinin, promising lead natural product for various drug developments. Mini Rev Chem 7:411–422

    Article  CAS  Google Scholar 

  22. Wartenberg M, Wolf S, Budde P et al (2003) The antimalaria agent artemisinin exerts antiangiogenic effects in mouse embryonic stem cell-derived embryoid bodies. Lab Invest 83:1647–1655

    Article  CAS  PubMed  Google Scholar 

  23. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  CAS  PubMed  Google Scholar 

  24. Zhou HJ, Wang WQ, Wu GD, Lee J, Li A (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol 47:131–138

    Article  CAS  PubMed  Google Scholar 

  25. Dell’Eva R, Pfeffer U, Vené R et al (2004) Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol 68:2359–2366

    Article  PubMed  Google Scholar 

  26. Nagashima M, Wauke K, Hirano D et al (2000) Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 39:1255–1262

    Article  CAS  Google Scholar 

  27. Westra J, Brouwer E, Bos R et al (2007) Regulation of cytokine-induced HIF-1α expression in rheumatoid synovial fibroblasts. Ann NY Acad Sci 1108:340–348

    Article  CAS  PubMed  Google Scholar 

  28. Paleolog EM (2002) Angiogenesis in rheumatoid arthritis. Arthritis Res 4(suppl 3):S81–S90

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ning Luo for her technical assistance. This work is supported in part by grants from National Natural Science Foundation of China (No u0772001), Natural Science Foundation of Guangdong, China (No 07001643), Scientific and Technological Project of Guangdong Province (No 2006B36003014), and Excellent Talent Program of the First Affiliated Hospital, SunYat-sen University, China.

Conflict of interest statement

No conflict of interest has been declared by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanshi Xu.

Additional information

Y. He, J. Fan, and H. Lin contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Fan, J., Lin, H. et al. The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 31, 53–60 (2011). https://doi.org/10.1007/s00296-009-1218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-1218-7

Keywords

Navigation