Skip to main content
Log in

Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The genetic manipulation of perennial woody tree species presents a range of additional challenges compared to that of annual weedy crop species. These include long generation times and reproductive cycle, the heterogeneity of plants under investigation and, when investigating wood properties, a number of physical and biochemical limitations to microscopical and molecular experimentation. The use of in vitro wood formation systems for molecular studies and Agrobacterium-mediated introduction of transgenes overcomes many of these obstacles. Using a commercially relevant Eucalyptus species as model organism, we demonstrate here that in vitro wood formation systems can be readily employed to introduce transgenes into growing wood-producing tissue, initially leading to frequent transient gene expression in a range of cell types. Stable transformation events were observed as sectors of transformed tissue derived from primary transformation events in individual cells. The usefulness of such systems for the analysis of gene function during the process of wood formation and wood quality determination, as well as for constructing developmental fate maps of cambial derivatives, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3
Fig. 4a–d

Similar content being viewed by others

References

  • Allona I, Quinn M, Shoop E, Swope K, Cyr SS, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RM (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species—Eucalyptus nitens and Eucalyptus globulus. Plant Sci 140:189–198

    Article  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Ser III Sci Vie 316:1194–1199

    CAS  Google Scholar 

  • Bossinger G (2002) Plant chimaeras and mosaics. In: Encyclopedia of life sciences, vol 14. Nature, London, pp 387–391, http://www.els.net

    Google Scholar 

  • Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122:1093–1102

    CAS  PubMed  Google Scholar 

  • Bourque JE (1995) Antisense strategies for genetic manipulations in plants. Plant Sci 105:125–149

    Article  CAS  Google Scholar 

  • Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72:109–138

    Article  CAS  Google Scholar 

  • Dai WH, Cheng ZM, Sargent W (2003) Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In vitro Cell Dev Biol Plant 39:6–11

    Google Scholar 

  • Finnegan EJ, Taylor BH, Craig S, Dennis ES (1989) Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell 1:757–764

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Lawrence GJ, Dennis ES, Ellis JG (1993) Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Mol Biol 22:625–633

    CAS  PubMed  Google Scholar 

  • Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn M (1996) Developmental and tissue-specific structural alterations of cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110:1413–1429

    CAS  PubMed  Google Scholar 

  • Gautheret RJ (1934) Culture du tissu cambial. C R Acad Sci 198:2195–2196

    Google Scholar 

  • Gelvin SB, Schilperoort RA (eds) (1998) Plant molecular biology manual, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Gonzalez ER, de Andrade A, Bertolo AL, Lacerda GC, Carneiro RT, Defavari VAP, Labate MTV, Labate CA (2002) Production of transgenic Eucalyptus grandis × Eucalyptus urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol 29:97–102

    Article  CAS  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    Article  CAS  PubMed  Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breed 6:307–315

    Article  CAS  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    Article  CAS  PubMed  Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chaiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoot RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the A. tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Hu C-Y, Chee PP, Chesney RH, Zhou JH, Miller PD, O’Brien WT (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep 9:1–5

    CAS  Google Scholar 

  • Jürgens G, Mayer U, Torres-Ruiz RA, Berleth T, Misera S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development 1 [Suppl]:27–38

    Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus) II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  CAS  PubMed  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    CAS  PubMed  Google Scholar 

  • Leitch MA (1999) The development of tissue culture techniques to study wood formation in Eucalyptus globulus Labill. PhD thesis, The University of Melbourne, Australia

  • Leitch MA, Bossinger G (2004) In vitro systems for the study of wood formation. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth, New York, pp 193–211

    Google Scholar 

  • Leitch MA, Savidge RA (1995) Evidence for auxin regulation of bordered-pit positioning during tracheid differentiation in Larix laricina. Int Assoc Wood Anat Bull 16:289–297

    Google Scholar 

  • Leitch MA, Savidge RA (2000) Tissue culture for the study of cambial activity and wood formation—a resurgence of interest in an old technique. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific, Oxford, pp 493–512

    Google Scholar 

  • Liu C-N, Steck TR, Habeck LL, Meyer JA, Gelvin SB (1993) Multiple copies of virG allow induction of Agrobacterium tumefaciens vir genes and T-DNA processing at alkaline pH. Mol Plant Microbe Interact 6:144–156

    CAS  Google Scholar 

  • Machado LDR, de Andrade GM, Cib LPB, Penchel RM, Brasiliero ACM (1997) Agrobacterium strain specificity and shooty tumor formation in eucalypts (Eucalyptus grandis × Eucalyptus urophylla). Plant Cell Rep 16:299–303

    Article  CAS  Google Scholar 

  • Manders G, Dossantos AVP, Vaz FBD, Davey MR, Power JB (1992) Transient gene-expression in electroporated protoplasts of Eucalyptus citriodora Hook. Plant Cell Tissue Organ Cult 30:69–75

    CAS  Google Scholar 

  • McCann MC, Domingo C, Stacey NJ, Milioni D, Roberts K (2000) Tracheary element formation in an in vitro system. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific, Oxford, pp 457–470

    Google Scholar 

  • McComb JA, Wroth M (1986) Vegetative propagation of Eucalyptus resinifera and Eucalyptus maculata using coppice cuttings and micropropagation. Aust For Res 16:231–242

    Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unraveling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  CAS  PubMed  Google Scholar 

  • Moralejo M, Rochange F, Boudet AM, Teulieres C (1998) Generation of transgenic Eucalyptus globulus plantlets through Agrobacterium tumefaciens mediated transformation. Aust J Plant Physiol 25:207–212

    Article  Google Scholar 

  • Mullins KV, Llewellyn DJ, Hartney VJ, Strauss S, Dennis ES (1997) Regeneration and transformation of Eucalyptus camaldulensis. Plant Cell Rep 16:787–791

    Article  CAS  Google Scholar 

  • Panshin AJ, DeZeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Potikha T, Delmer DP (1995) A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J 7:453–460

    Article  CAS  Google Scholar 

  • Regan S, Chaffey NJ, Sundberg B (1999) Exploring cambial growth with Arabidopsis and Populus. J Exp Bot 50 [Suppl]:30

    Google Scholar 

  • Reiter WD (1998) Arabidopsis thaliana as a model system to study synthesis, structure, and function of the plant cell wall. Plant Physiol Biochem 36:167–176

    Article  CAS  Google Scholar 

  • Reiter WD, Chapple CSS, Somerville CR (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261:1032–1035

    CAS  Google Scholar 

  • Rochange F, Serrano L, Marque C, Teulieres C, Boudet AM (1995) DNA delivery into Eucalyptus globulus zygotic embryos through biolistics—optimization of the biological and physical parameters of bombardment for two different particle guns. Plant Cell Rep 14:674–678

    Google Scholar 

  • Savidge RA (1993) In vitro wood formation in chips from merchantable stem regions of Larix laricina. Int Assoc Wood Anat Bull 14:3–11

    Google Scholar 

  • Serrano L, Rochange F, Semblat JP, Marque C, Teulieres C, Boudet AM (1996) Genetic transformation of Eucalyptus globulus through biolistics: complementary development of procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue. J Exp Bot 47:285–290

    CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlén M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    Article  CAS  PubMed  Google Scholar 

  • Stomp A-M (1992) Histochemical localization of β-glucuronidase. In: Gallagher SR (ed) GUS protocols: using the GUS gene as a reporter of gene expression. Academic, San Diego, pp 103–113

    Google Scholar 

  • Strabala TJ (2004) Expressed sequence tag databases from forestry tree species. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth, New York, pp 19–51

    Google Scholar 

  • Szymkowiak EJ, Sussex IM (1996) What chimeras can tell us about plant development. Annu Rev Plant Physiol 47:351–376

    Article  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21:555–562

    CAS  PubMed  Google Scholar 

  • Teulieres C, Grimapettenati J, Curie C, Teissie J, Boudet AM (1991) Transient foreign gene-expression in polyethylene-glycol treated or electropulsated Eucalyptus gunnii protoplasts. Plant Cell Tiss Org 25:125–132

    Google Scholar 

  • Wilson K, White DJB (1986) The anatomy of wood: its diversity and variability. Stobart, London

    Google Scholar 

  • Xie DJ, Hong Y (2002) Agrobacterium-mediated transformation of Acacia mangium. Plant Cell Rep 20:917–922

    Article  CAS  Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees: structure and function. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Acknowledgements

This project was supported in part through the Australian Government’s Cooperative Research Center Program, the CRC for Hardwood Fiber and Paper Science. A.S. and K.V.B. hold APA (I) scholarships awarded by the Australian Research Council (ARC). Thanks to Lawrie Wilson and Josquin Tibbits for critically reading our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Bossinger.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spokevicius, A.V., Van Beveren, K., Leitch, M.A. et al. Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant Cell Rep 23, 617–624 (2005). https://doi.org/10.1007/s00299-004-0856-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0856-1

Keywords

Navigation