Skip to main content
Log in

Fusion of mitochondria in tobacco suspension cultured cells is dependent on the cellular ATP level but not on actin polymerization

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DNP:

2,4-Dinitrophenol

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

ΔΨm :

Mitochondrial inner membrane potential

Lat B:

Latrunculin B

GFP:

Green fluorescent protein

References

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  CAS  PubMed  Google Scholar 

  • Arimura S, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc Natl Acad Sci USA 99:5727–5731

    Article  CAS  PubMed  Google Scholar 

  • Arimura S, Aida GP, Fujimoto M, Nakazono M, Tsutsumi N (2004a) Arabidopsis dynamin-like protein 2a (ADL2a), like ADL2b, is involved in plant mitochondrial division. Plant Cell Physiol 45:236–242

    Article  CAS  PubMed  Google Scholar 

  • Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004b) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808

    Article  CAS  PubMed  Google Scholar 

  • Arimura S, Fujimoto M, Doniwa Y, Kadoya N, Nakazono M, Sakamoto W, Tsutsumi N (2008) Arabidopsis ELONGATED MITOCHONDRIA1 is required for localization of DYNAMIN-RELATED PROTEIN3A to mitochondrial fission sites. Plant Cell 20:1555–1566

    Article  CAS  PubMed  Google Scholar 

  • Baricault L, Ségui B, Guégand L, Olichon A, Valette A, Larminat F, Lenaers G (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp Cell Res 313:3800–3808

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Arimura S, Nakazono M, Tsutsumi N (2008) Arabidopsis dynamin-related protein DRP2B is co-localized with DRP1A on the leading edge of the forming cell plate. Plant Cell Rep 27:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Herlan M, Bornhövd C, Hell K, Neupert W, Reichert AS (2004) Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol 165:167–173

    Article  CAS  PubMed  Google Scholar 

  • Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  CAS  PubMed  Google Scholar 

  • Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354

    Article  CAS  PubMed  Google Scholar 

  • Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:1225–1243

    Article  CAS  PubMed  Google Scholar 

  • Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, Rojo M (2005) Separate fusion of outer and inner mitochondrial membranes. EMBO Rep 6:853–859

    Article  CAS  PubMed  Google Scholar 

  • Mattenberger Y, James DI, Martinou JC (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett 538:53–59

    Article  CAS  PubMed  Google Scholar 

  • Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “Hela” Cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Okamoto K, Shaw JM (2005) Mitochondrial Morphology and Dynamics in Yeast and Multicellular Eukaryotes. Annu Rev Genet 39:503–536

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Pierce RH (1999) Detection of changes in mitochondrial function during apoptosis by simultaneous staining with multiple fluorescent dyes and correlated multiparameter flow cytometry. Cytometry 35:311–317

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Zhang YZ, Krämer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372

    CAS  PubMed  Google Scholar 

  • Scott I, Tobin AK, Logan DC (2006) BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. J Exp Bot 5:1275–1280

    Article  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  CAS  PubMed  Google Scholar 

  • Takanashi H, Arimura S, Sakamoto W, Tsutsumi N (2006) Different amounts of DNA in each mitochondrion in rice root. Genes Genet Syst 81:215–218

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr M. Karimi (Ghent University, Belgium) for kindly donating Gateway destination vectors and Dr W. Sakamoto (Okayama University, Japan) for donating the Mt-GFP plasmid. This research was supported by Grants from the Nara Institute of Science and Technology (to KW) and the Ministry of Education, Culture, Sports, Science, and Technology of JAPAN (Grants 18075005 and 18208002 to NT, and Grant 17780002 to SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Tsutsumi.

Additional information

Communicated by F. Brandizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakamatsu, K., Fujimoto, M., Nakazono, M. et al. Fusion of mitochondria in tobacco suspension cultured cells is dependent on the cellular ATP level but not on actin polymerization. Plant Cell Rep 29, 1139–1145 (2010). https://doi.org/10.1007/s00299-010-0897-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0897-6

Keywords

Navigation