Skip to main content
Log in

Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria lobata

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A novel isoflavone 7- O -glucosyltransferase PlUGT1 was isolated from Pueraria lobata . PlUGT1 could convert daidzein to daidzin, genistein to genistin as well as formononetin to ononin.

Abstract

Pueraria lobata roots are traditionally consumed as a rich source of isoflavone glycosides that have various human health benefits. However, to date, the genes encoding isoflavone UDP-glycosyltransferases (UGTs) have only been isolated from the roots of soybean seedlings (GmIF7GT), soybean seeds (UGT73F2) and Glycyrrhiza echinata cell suspension cultures (GeIF7GT). To investigate the isoflavone metabolism in P. lobata, 40 types of partial UGT cDNAs were isolated from P. lobata, and seven full-length UGT candidates with preferential expression in roots were identified. Functional assays in yeast (Saccharomyces cerevisiae) revealed that one of these UGT candidates, designated PlUGT1 (official UGT designation UGT88E12), efficiently glycosylated isoflavone aglycones at the 7-hydroxy group. Recombinant PlUGT1 purified from Escherichia coli cells was characterized and shown to be relatively specific for isoflavone aglycones, while flavonoid substrates were poorly accepted. The biochemical results suggested that PlUGT1 was an isoflavone 7-O-glucosyltransferase. The deduced amino acid sequence of PlUGT1 shared only 26 % identity with GeIF7GT, 27 % with UGT73F2 and 63 % with GmIF7GT. The PlUGT1 gene was highly expressed in P. lobata roots relative to other organs and strongly induced by methyl jasmonate signal in P. lobata cell suspension culture. The transcript abundance of PlUGT1 was correlated with the accumulation pattern of isoflavone glycosides such as daidzin in P. lobata plants or in cell suspension culture. The biochemical properties and gene expression profile supported the idea that PlUGT1 could play a role in isoflavone glycosylation in P. lobata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cDNAs:

Complementary DNAs

HID:

Trihydroxyisoflavanone dehydratase

HPLC:

High-performance liquid chromatography

IFS:

Isoflavone synthase

IPTG:

Isopropyl-D-thiogalactopyranoside

LC–MS:

Liquid chromatography–mass spectrometry

MeJA:

Methyl jasmonate

MS:

Murashige and Skoog

NAA:

Naphthalene acetic acid

PSPG:

Putative secondary plant glycosyltransferase

qRT-PCR:

Quantitative RT-PCR

RACE:

Rapid-amplification of cDNA ends

UGTs:

UDP-glycosyltransferases

References

  • Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41:875–887

    Article  CAS  PubMed  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72:844–852

    CAS  PubMed  Google Scholar 

  • Auyeung KK, Law PC, Ko JK (2012) Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncol Rep 28:2188–2194

    CAS  PubMed  Google Scholar 

  • Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 101:119–126

    Article  CAS  Google Scholar 

  • Boue SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter-Wientjes CH, Shih BY, McLachlan JA, Cleveland TE (2003) Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J Agric Food Chem 51:2193–2199

    Article  CAS  PubMed  Google Scholar 

  • Bowles D, Isayenkova J, Lim EK, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The C-glycosylation of flavonoids in cereals. J Biol Chem 284:17926–17934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Hao F, Li C, Gou J, Lu D, Gong F, Tang H, Zhang Y (2013) Identifying three ecological chemotypes of Xanthium strumarium glandular trichomes using a combined NMR and LC-MS method. PLoS One 8:e76621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101:819–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhaubhadel S, Farhangkhoee M, Chapman R (2008) Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Bot 59:981–994

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • He X, Blount JW, Ge S, Tang Y, Dixon RA (2011) A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). Planta 233:843–855

    Article  CAS  PubMed  Google Scholar 

  • Hirotani M, Kuroda R, Suzuki H, Yoshikawa T (2000) Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta 210:1006–1013

    CAS  PubMed  Google Scholar 

  • Huang L, Li J, Ye H, Li C, Wang H, Liu B, Zhang Y (2012) Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta 236:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. Mitochondrial DNA 5:41–49

    Article  CAS  Google Scholar 

  • Jin SE, Son YK, Min BS, Jung HA, Choi JS (2012) Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res 35:823–837

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212

    Article  CAS  PubMed  Google Scholar 

  • Keung WM, Vallee BL (1998) Kudzu root: an ancient Chinese source of modern antidipsotropic agents. Phytochemistry 47:499–506

    Article  CAS  PubMed  Google Scholar 

  • Keung WM, Lazo O, Kunze L, Vallee BL (1996) Potentiation of the bioavailability of daidzin by an extract of Radix puerariae. Proc Natl Acad Sci USA 93:4284–4288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333–342

    Article  CAS  Google Scholar 

  • Koster J, Barz W (1981) UDP-glucose: isoflavone 7-O-glucosyltransferase from roots of chick pea (Cicer arietinum L.). Arch Biochem Biophys 212:98–104

    Article  CAS  PubMed  Google Scholar 

  • Lamartiniere CA (2000) Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr 71:1705S–1707S Discussion 1708S–1709S

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee JS (2004) Supplementation of Pueraria radix water extract on changes of antioxidant enzymes and lipid profile in ethanol-treated rats. Clin Chim Acta 347:121–128

    Google Scholar 

  • Li G, Zhang Q, Wang Y (2010) Chemical constituents from roots of Pueraria lobata. Zhongguo Zhong Yao Za Zhi 35:3156–3160

    CAS  PubMed  Google Scholar 

  • Li Z-B, Li C-F, Li J, Zhang Y-S (2014) Molecular cloning and functional characterization of two divergent 4-coumarate: coenzyme A ligases from kudzu (Pueraria lobata). Biol Pharm Bull 37:113–122

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Guthrie S, Xie CY, Mai K, Lee DY, Lumeng L, Li TK (1996) Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism. Alcohol Clin Exp Res 20:659–663

    Article  CAS  PubMed  Google Scholar 

  • Merz-Demlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS (2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 71:1462–1469

    CAS  PubMed  Google Scholar 

  • Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang X, Dixon RA (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagashima S, Inagaki R, Kubo A, Hirotani M, Yoshikawa T (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 218:456–459

    Article  CAS  PubMed  Google Scholar 

  • Nagatoshi M, Terasaka K, Nagatsu A, Mizukami H (2011) Iridoid-specific glucosyltransferase from Gardenia jasminoides. J Biol Chem 286:32866–32874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590

    Article  CAS  PubMed  Google Scholar 

  • Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paquette S, Moller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry 62:399–413

    Article  CAS  PubMed  Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sawada S, Suzuki H, Ichimaida F, Yamaguchi MA, Iwashita T, Fukui Y, Hemmi H, Nishino T, Nakayama T (2005) UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J Biol Chem 280:899–906

    Article  CAS  PubMed  Google Scholar 

  • Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  Google Scholar 

  • Thiem B (2003) In vitro propagation of isoflavone-producing Pueraria lobata (Willd.) Ohwi. Plant Sci 165:1123–1128

    Article  CAS  Google Scholar 

  • Wu HQ, Guo HN, Wang HQ, Chang MZ, Zhang GL, Zhao YX (2009) Protective effects and mechanism of puerarin on learning-memory disorder after global cerebral ischemia-reperfusion injury in rats. Chin J Integr Med 15:54–59

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Endo M, Kon-no T, Kato T, Mitsuzuka M, Ohsawa K (2005) Antipyretic, analgesic and muscle relaxant activities of pueraria isoflavonoids and their metabolites from Pueraria lobata Ohwi-a traditional Chinese drug. Biol Pharm Bull 28:1224–1228

    Article  CAS  PubMed  Google Scholar 

  • Yu H-S, Ma L-Q, Zhang J-X, Shi G-L, Hu Y-H, Wang Y-N (2011) Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry 72:862–870

    Article  CAS  Google Scholar 

  • Zhang FR, Chen JZ, Zhu JH, Wang XX, Shang YP, Guo XG, Dai HM, Sun J (2004) Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood. Zhongguo Zhong Yao Za Zhi 29:777–781

    CAS  PubMed  Google Scholar 

  • Zhao C, Chan HY, Yuan D, Liang Y, Lau TY, Chau FT (2011) Rapid simultaneous determination of major isoflavones of Pueraria lobata and discriminative analysis of its geographical origins by principal component analysis. Phytochem Anal 22:503–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially supported by the National Natural Science Foundation of China (Project No. 31170284), the Grant for One Hundred Talents Program of the Chinese Academy of Sciences, China (Project No. Y129441R01) and the Innovation Project of Chinese Academy of Science (Project No. KSCX2-EW-J-20).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansheng Zhang.

Additional information

Communicated by C. F. Quiros.

J. Li and Z. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, Z., Li, C. et al. Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria lobata . Plant Cell Rep 33, 1173–1185 (2014). https://doi.org/10.1007/s00299-014-1606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1606-7

Keywords

Navigation