Skip to main content

Advertisement

Log in

Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We found triptolide synthesis is correlated with the expressions of TwGGPPS1 and TwGGPPS4 . This lays the foundation for future studies of biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii.

Abstract

Tripterygium wilfordii is a traditional Chinese medical plant commonly used to treat rheumatoid arthritis. One of its main bioactive compounds is triptolide, which is identified as an abietane-type diterpenoid natural product. Geranylgeranyl diphosphate synthase (GGPPS) catalyses the synthesis of GGPP (geranylgeranyl diphosphate), the common precursor of diterpenes, and is therefore a crucial enzyme in diterpene biosynthesis. A previous study showed that GGPP could be catalyzed by copalyl diphosphate synthase and kaurene synthase like of Salvia miltiorrhiza (SmCPS, SmKSL) to miltiradiene, a key intermediate in tanshinone biosynthesis. In this paper, five new full-length cDNAs (TwGGPPS) encoding GGPP synthases were cloned from T. wilfordii. Sequence comparisons revealed that all six TwGGPPSs (including TwGGPPS2 cloned previously) exhibit similarities to GGPPSs of other plants. Subsequent functional complement assays demonstrated that TwGGPPS1, TwGGPPS4 and TwGGPPS5 can participate in miltiradiene biosynthesis in the recombinant E. coli. Correlation analysis of gene expressions and secondary metabolite accumulation indicated that TwGGPPS1 and TwGGPPS4 are likely involved in the biosynthesis of triptolide. These findings lay the foundation for future studies of the biosynthetic pathways for triptolide and other diterpenoids in T. wilfordii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashby MN, Kutsunai SY, Ackerman S, Tzagoloff A, Edwards PA (1992) COQ2 is a candidate for the structural gene encoding parahydroxybenzoate: polyprenyltransferase. J Biol Chem 267:4128–4136

    CAS  PubMed  Google Scholar 

  • Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodríguez-Concepción M, Gruissem W, Vranová E (2013) Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol 82:393–416

    Article  CAS  PubMed  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429

    Article  CAS  PubMed  Google Scholar 

  • Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766

    Article  CAS  PubMed  Google Scholar 

  • Del Sal G, Manfioletti G, Schneider C (1989) The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7:514–520

    PubMed  Google Scholar 

  • Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemmi H, Noike M, Nakayama T, Nishino T (2003) Analternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. Eur J Biochem 270:2186–2194

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhou L, Wu H, Pavlos N, Chim SM, Liu Q, Zhao J, Xue W, Tan RX, Ye J, Xu J, Ang ES, Feng H, Tickner J, Xu J, Ding Y (2015) Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-κB activation and titanium particle-induced osteolysis in a mouse model. Mol Cell Endocrinol 399:346–353

    Article  CAS  PubMed  Google Scholar 

  • Jiang X (1994) Clinical observations on the use of the Chinese herb Tripterygium wilfordii Hook for the treatment of nephrotic syndrome. Pediatr Nephrol 8:343–344

    Article  CAS  PubMed  Google Scholar 

  • Joly A, Edward PA (1993) Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. J Biol Chem 268:26983–26989

    CAS  PubMed  Google Scholar 

  • Kannaiyan R, Shanmugam MK, Sethi G (2011) Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett 303:9–20

    Article  CAS  PubMed  Google Scholar 

  • Laule O, Fiirholz A, Chang HS (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Zhang YY, Tan HW, Jia YF, Li D (2008) Therapeutic effect of tripterine on adjuvant arthritis in rats. J Ethnopharmacol 118:479–484

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li FQ, Wang XM (2010) Novel anti-inflammatory and neuroprotective agents for Parkinson`s disease. CNS Neurol Disord Drug Targets 9:232–240

    Article  PubMed  Google Scholar 

  • Liu J, Wu QL, Feng YH, Wang YF, Li XY, Zuo JP (2005) Triptolide suppresses CD80 and CD86 expressions and IL-12 production in THP-1 cells. Acta Pharmacol Sin 26:223–227

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tu S, Gao W, Wang Y, Liu P, Hu Y, Dong H (2013) Extracts of Tripterygium wilfordii Hook F in the treatment of rheumatoid arthritis: a systemic review and meta-analysis of randomised controlled trials. Evid Based Complement Alternat Med 2013:410793

    PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORC Anization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  CAS  PubMed  Google Scholar 

  • Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plant: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106

    Article  CAS  PubMed  Google Scholar 

  • Patavino T, Brady DM (2001) Natural medicine and nutritional therapy as an alternative treatment in systemic lupus erythematosus. Altern Med Rev 6:460–471

    CAS  PubMed  Google Scholar 

  • Ren X, Zhang T, Hu J, Ding W, Wang X (2010) Triptolide T10 enhances AAV-mediated gene transfer in mice striatum. Neurosci Lett 479:187–191

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) IsoPrenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song L, Poulter CD (1994) Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA 91:3044–3048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su P, Cheng Q, Wang X, Cheng X, Zhang M, Tong Y, Li F, Gao W, Huang L (2014) Characterization of 8 terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO (2011) XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 3:182–188

    Article  Google Scholar 

  • Vandermoten S, Haubruge E, Cusson M (2009) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695

    Article  CAS  PubMed  Google Scholar 

  • Vranová E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol 156:1655–1660

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang GD, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Liang XB, Li FQ, Zhou HF, Liu XY, Wang JJ, Wang XM (2008) Therapeutic strategies for Parkinson`s disease: the ancient meets the future—traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells. Neurochem Res 10:1956–1963

    Article  Google Scholar 

  • Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2:65–72

    CAS  PubMed  Google Scholar 

  • Zhang M, Su P, Liu YJ, Tong YR, Zhao YJ, Gao W, Wang XJ, Huang LQ (2015) Cloning and bioinformatics analysis of geranylgeranyl diphosphate synthase gene of Tripterygium wilfordii. Chin J Chin Mater Med 40:1066–1070

    Google Scholar 

  • Zhao YJ, Cheng QQ, Su P, Chen X, Wang XJ, Gao W, Huang LQ (2014) Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl Microbiol Biotechnol 98:2371–2383

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234–3241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81422053 and 81373906 to W.G, and 81325023 to L.H.), and National High Technology Research and Development Program of China (863 Program:2015AA0200908) to W.G., and the Author of National Excellent Doctoral Dissertation of China (201188) to W.G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Juan Wang, Lu-Qi Huang or Wei Gao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Communicated by B. Li.

M. Zhang and P. Su contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Su, P., Zhou, YJ. et al. Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii . Plant Cell Rep 34, 2179–2188 (2015). https://doi.org/10.1007/s00299-015-1860-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1860-3

Keywords

Navigation