Skip to main content
Log in

Phylogeography of split kelp Hedophyllum nigripes: northern ice-age refugia and trans-Arctic dispersal

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pleistocene climate cycles greatly influenced the distributions of kelps in northern seas and gated trans-Arctic dispersals between the North (N) Pacific and N Atlantic oceans. Here, we used partial sequences of the mitochondrial DNA cytochrome oxidase I-5′ (COI) and plastid ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit-3′ (rbcL) to resolve the phylogeography of the kelp Hedophyllum nigripes in the Gulf of Alaska and globally. In the Gulf of Alaska, genetic diversity was moderate (COI: h = 0.493 ± 0.076, n = 57; rbcL: h = 0.578 ± 0.00047, n = 54), but nucleotide diversity was small (COI: θπ = 0.00114 ± 0.00100, n = 57; rbcL: θπ = 0.0001 ± 0.00089, n = 54). Concatenated sequences showed strong haplotype-frequency differences among populations (ΦST = 0.728). The addition of previously published COI sequences from British Columbia showed a general absence of southern haplotypes in the Gulf of Alaska, supporting the conclusion of northern ice-age refugia. COI sequences in Canadian Arctic-Northwestern (NW) Atlantic populations differed by 1–2 mutation from Northeastern (NE) Pacific sequences, and unexpectedly, were marginally more closely related to populations in British Columbia than to geographically intermediate populations in the Gulf of Alaska. COI haplotypes from the Svalbard Archipelago in the NE Atlantic showed no variability and differed by 1–2 mutations from haplotypes in the NW Atlantic. Time-calibrated genetic divergences indicated trans-Arctic dispersal(s) from the N Pacific into the N Atlantic in the mid-Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543

    CAS  PubMed  Google Scholar 

  • Agardh JG (1868) Bidrag till kännedomen om Spetsbergens alger. Tilläg till föregående afhandling. Kungliga Svenska Vetenskaps-Akademiens Handlingar Nye Följd 7:28–49

    Google Scholar 

  • Albrecht GT, Valentin AE, Hundertmark KJ, Hardy SM (2014) Panmixia in Alaskan populations of the snow crab Chionoecetes opilio (Malacostraca: Decapoda) in the Bering, Chukchi, and Beaufort Seas. J Crust Biol 34:31–39

    Google Scholar 

  • Anderson EK, North WJ (1966) In situ studies of spore production and dispersal in the giant kelp, Macrocystis. Proc Internat Seaweed Symp 5:73–86

    Google Scholar 

  • Assis J, Araújo MB, Serrão EA (2018) Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob Change Biol 24:e55–e66

    Google Scholar 

  • Assis J, Serrão EA, Claro B, Perrin C et al (2014) Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol Ecol 23:2797–2810

    CAS  PubMed  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Bartsch I, Wiencke C, Bischof K et al (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Google Scholar 

  • Bigg GR (2014) Environmental confirmation of multiple ice age refugia for Pacific cod, Gadus macrocephalus. Evol Ecol 28:177–191

    Google Scholar 

  • Bigg GR, Cunningham CW, Ottersen G et al (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proc Roy Soc B 275:163–173

    Google Scholar 

  • Bittner L, Payri CE, Couloux A et al (2008) Molecular phylogeny of the Dictyotales and their position within the Phaeophyceae, based on nuclear, plastid and mitochondrial DNA sequence data. Mol Phylogenet Evol 49:211–226

    CAS  PubMed  Google Scholar 

  • Bringloe TT, Saunders GW (2019a) Trans-Arctic speciation of Floirdeophyceae (Rhodophyta) since the opening of the Bering Strait, with consideration of the “species pump” hypothesis. J Biogeogr 46:694–705

    Google Scholar 

  • Bringloe TT, Saunders GW (2019b) DNA barcoding of the marine macroalgae from Nome, Alaska (Northern Bering Sea) reveals many trans-Arctic species. Polar Biol 42:851–864

    Google Scholar 

  • Bringloe TT, Verbruggen H, Saunders GW (2020) Unique biodiversity in Arctic marine forests is shaped by diverse recolonisation pathways and far northern glacial refugia. Proc Natl Acad Sci 117:22590–22596

  • Burrowes R, Rousseau F, Müller DG, de Reviers B (2003) Taxonomic placement of Microzonia (Phaeophyceae) in the Syringodermatales based on the rbcL and 28S nrDNA sequences. Cryptogam Algol 24:63–73

    Google Scholar 

  • Byun S, Koop BF, Reimchen TE (1997) North American black bear mtDNA phylogeography: implications for morphology and the Haida Gwaii glacial refugium controversy. Evolution 51:1647–1653

    CAS  PubMed  Google Scholar 

  • Calvin NI, Ellis RJ (1981) Growth of subtidal Laminaria groenlandica in southeastern Alaska related to season and depth. Bot Mar24: 107–114

  • Canino MF, Spies IB, Cunningham KM, Hauser L, Grant WS (2010) Multiple ice-age refugia in Pacific cod, Gadus macrocephalus. Mol Ecol 19:4339–4351

    PubMed  Google Scholar 

  • Carrara PE, Ager TA, Baichtal JF (2007) Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. Can J Earth Sci 44:229–244

    Google Scholar 

  • Castorani MCN, Reed DC, Raimondi PT et al (2017) Fluctuations in population fecundity drive variation in demographic connectiviy and metapopulation dynamics. Proc R Soc B Biol Sci 284:e20162086

    Google Scholar 

  • Christie H, Andersen GS, Bekkby T et al (2019) Shifts between sugar kelp and turf algae in Norway: regime shifts or fluctuations between different opportunistic seaweed species? Font Mar Sci 6:e72

    Google Scholar 

  • Clague JJ, James TS (2002) History and isostatic effects of the last ice sheet in southern British Columbia. Quatern Sci Rev 21:71–87

    Google Scholar 

  • Coyer JA, Hoarau G, van Schaik J et al (2011) Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic. J Biogeogr 38:756–771

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245

    Google Scholar 

  • Druehl LD (1979) On the taxonomy of California Laminaria (Phaeophyta). J Phycol 15:337–338

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour. and Laminaria solidungula J. Ag. (laminariales: phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Google Scholar 

  • Ellis RJ, Calvin NI (1981) Rope culture of the kelp Laminaria groenlandica in Alaska. Mar Fish Rev 43:19–21

    Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Google Scholar 

  • Filbee-Dexter K, Wernberg T, Fredriksen S et al (2019) Arctic kelp forests: diversity resilience and future. Glob Planet Chang 172:1–14

    Google Scholar 

  • Fraser CI, Nikula R, Waters JM (2011) Oceanic rafting by a coastal community. Pro Roy Soc B 278:649–655

    Google Scholar 

  • Gillespie RG, Baldwin BG, Waters JM et al (2012) Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol 27:47–56

    PubMed  Google Scholar 

  • Gilpin M (1991) The genetic effective size of a metapopulation. Biol J Linn Soc 42:165–175

    Google Scholar 

  • Gladenkov AY, Oleinik AE, Marincovich L Jr, Barinov KB (2002) A refined age for the earliest opening of Bering Strait. Palaeogeogr Palaeoclim Palaeoecol 183:321–328

    Google Scholar 

  • Grant WS (1986) Genetic divergence between Atlantic, Clupea harengus, and Pacific C. pallasi, herring. Copeia 1986:714–719

    Google Scholar 

  • Grant WS, Ståhl G (1988) Evolution of Atlantic and Pacific cod: Loss of genetic variation and gene expression in Pacific cod. Evolution 42:138–146

    PubMed  Google Scholar 

  • Guzinski J, Mauger S, Cock JM, Valero M (2016) Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations. J Appl Phycol 28:3057–3070

    CAS  Google Scholar 

  • Hansen GI (1997) A revised checklist and preliminary assessment of microbenthic marine algae and seagrasses of Oregon. In: Kay TN, Liston A, Love RM, Luoma DL, Meinke RJ, Wilson MV (eds) Conservation and Management of Native Flora and Fungi. Native Plant Society of Oregon, Corvallis, pp 175–200

    Google Scholar 

  • Heaton TH, Talbot SL, Shields GF (1996) An ice age refugium for large mammals in the Alexander Archipelago, southeastern Alaska. Quat Res 46:86–192

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickerson MJ, Ross JR (2001) Post-glacial population history and genetic structure of the northern clingfish (Bobbiesox maeandricus) revealed from mtDNA analysis. Mar Biol 138:407–419

  • Ho SYW, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568

    CAS  PubMed  Google Scholar 

  • Holder K, Montgomerie R, Friesen VL (1999) A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53:1936–1950

    CAS  PubMed  Google Scholar 

  • Hopkins DM (1959) Cenozoic history of the Bering Land Bridge. Science 129:1519–1528

    CAS  PubMed  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    CAS  PubMed  Google Scholar 

  • Kaufman DS, Manley WF (2004) Pleistocene maximum and Late Wisconsinan glacier extents across Alaska, USA. Develop Quatern Sci 2:9–27

    Google Scholar 

  • Klinkenberg B (ed.) (2018) E-Flora BC: Electronic Atlas of the Flora of British Columbia. https://ibis.geog.ubc.ca/biodiversity/eflora/NorthPacificSeaweeds.html Accessed several times in 2019

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper FC, Peters AF, Shewring DM et al (2016) Arctic marine phytobenthos of northern Baffin Island. J Phycol 52:532–549

    PubMed  PubMed Central  Google Scholar 

  • Laakkonen HM, Lajus DL, Strelkov P, Väinölä R (2013) Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in North-East European seas. BMC Evol Biol 13:67

    PubMed  PubMed Central  Google Scholar 

  • Laakkonen HM, Strelkov P, Väinölä R (2015) Molecular lineage diversity and inter-oceanic biogeographical history in Hiatella (Mollusca, Bivalvia). Zool Script 44:383–402

    Google Scholar 

  • Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A muilti-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512

    CAS  Google Scholar 

  • Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512

  • Lein TE, Bruntse G, Gunarsson K, Nielsen R (2011) New records of benthic marine algae for Norway, with notes on some rare species from the Florø district, western Norway. Sarsia 84(1):39–53

    Google Scholar 

  • Li Q, Wang X, Zhang J, Yao J, Duan D (2016) Maternal inheritance of organellar DNA demonstrated with DNA markers in crosses of Saccharina japonica (Laminariales, Phaeophyta). J Appl Phycol 28:2019–2026

    CAS  Google Scholar 

  • Lindeberg MR, Lindstrom SC (2010) Field Guide to Seaweeds of Alaska. University of Alaska Fairbanks, Sea Grant College Program

    Google Scholar 

  • Lindstrom SC (2001) The Bering Strait connection: Dispersal and speciation in boreal macroalgae. J Biogeogr 28:243–251

    Google Scholar 

  • Lindstrom SC (2009) The biogeography of seaweeds in southeast Alaska. J Biogeogr 36:401–409

    Google Scholar 

  • Longtin CM, Saunders GW (2015) On the utility of mucilage ducts as a taxonomic character in Laminaria and Saccharina (Phaeophyceae)–the conundrum of S. groenlandica. Phycologia 54:440–450

    Google Scholar 

  • Longtin CM, Saunders GW (2016) The relative contribution of Saccharina nigripes (Phaeophyceae) to the Bay of Fundy Laminariaceae: spatial and temporal variability. Mar Ecol Prog Ser 543:153–162

    CAS  Google Scholar 

  • Lund L (2014) Morphological diversity in Laminaria digitata: different species or different phenotypes. MSc thesis, Norwegian University of Science and Technology, Trondheim, p 64

  • Luttikhuizen PC, van den Heuvel FHM, Rebours C et al (2018) Strong population structure but no equilibrium yet: Genetic connectivity and phylogeography in the kelp Saccharina latissima (Laminariales, Phaeophyta). Ecol Evol 8:4265–4277

    PubMed  PubMed Central  Google Scholar 

  • Lydon AM (2015) Identification of Saccharina groenlandica (Phaeophyceae) around the Svalbard Archipelago: DNA barcoding using cytochrome C oxidase subunit I (COI). MSc thesis, California Polytechnic State University, San Luis Obispo, 83 p

  • Macaya EC, Lopez B, Tala F, Tellier F, Thiel M (2016) Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser C (eds) Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Springer, Dordrecht, pp 97–130

    Google Scholar 

  • Maggs CA, Castilho R, Foltz DW et al (2008) Evaluating signatures of glacial refugia for north Atlantic benithic marine taxa. Ecology 89:S108–S112

    PubMed  Google Scholar 

  • Makhrov AA, Lajus DL (2018) Postglacial colonization of the North European seas by Pacific fishes and lamprey. Contemp Probl Ecol 11:247–258

    Google Scholar 

  • Mann DH, Hamilton TD (1995) Late Pleistocene and Holocene paleoenvironments of the North Pacific coast. Quat Sci Revs 14:449–471

    Google Scholar 

  • Marko PB, Hoffman JM, Emme SA et al (2010) The ‘expansion-contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 19:146–169

    CAS  PubMed  Google Scholar 

  • Marko PB, Moran AL, Kolotuchina NK, Zaslavskaya NI (2014) Phylogenetics of the gastropod genus Nucella (Neogastropoda: Muricidae): species identities, timing of diversification and correlated patterns of life-history evolution. J Moll Stud 80:341–353

    Google Scholar 

  • Marincovich L Jr, Gladenkov AY (2001) New evidence for the age of Bering Strait. Quatern Sci Revs 20:329–335

    Google Scholar 

  • Marincovich L Jr, Barinov KB, Oleinik AE (2002) The Astarte (Bivalvia: Astartidae) that document the earliest opening of Bering Strait. J Paleontol 76:239–245

    Google Scholar 

  • McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248

    CAS  Google Scholar 

  • Mondragon J, Mondragon J (2010) Seaweeds of the Pacific Coast, common marine algae from Alaska to Baja California. Shoreline Press, Santa Barbara, CA

    Google Scholar 

  • Moore TC Jr, Burckle LH, Geitzenauer K et al (1980) The reconstruction of sea surface temperatures in the Pacific Ocean of 18,000 B.P. Mar Micropal 5:215–247

    Google Scholar 

  • Motomura A, Nagumo T, Kimura K (2010) Cytoplasmic inheritance of organelles in brown algae. J Plant Res 123:185–192

    PubMed  Google Scholar 

  • Moy FE, Christie H (2012) Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar Biol Res 8:357–369

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 1:1–10

    Google Scholar 

  • Neiva J, Paulino C, Nielsen MM et al (2018) Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Sci Rep 8:e1112

    Google Scholar 

  • Payne MC, Brown CA, Reusser DA, Lee L II (2012) Ecoregional analysis of nearshore sea-surface temperature in the North Pacific. PLoS ONE 7:e30105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peteet DM, Mann DH (1994) Late-glacial vegetational, tephra, and climatic history of southwestern Kodiak Island, Alaska. Ecoscience 1:255–267

    Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecology Evol 23:564–571

    Google Scholar 

  • Provan JIM, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803

    CAS  PubMed  Google Scholar 

  • Reed DC, Kinlan BP, Raimondi PT (2006) A metapopulation perspective on the patch dynamics of giant kelp in southern California. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Academic Press, Burlington, MA, pp 353–386

    Google Scholar 

  • Robuchon M, Le Gall L, Mauger S, Valero M (2014) Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23:2669–2685

    PubMed  Google Scholar 

  • Rothman MD, Mattio L, Anderson RJ, Bolton JJ (2017) A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the south Atlantic Ocean. J Phycol 53:778–789

    PubMed  Google Scholar 

  • Rueness J, Grattegord T, Lein TE et al (2001) Distribution of marine, benthic macroorganisms in Norway: A tabulated catalogue. Director Nat Manag, Trondheim, Norway

    Google Scholar 

  • Sabin AL, Pisias NG (1996) Sea surface temperature changes in the Northeastern Pacific Ocean during the past 20,000 years and their relationship to climate change in Northwestern North America. Quatern Res 46:48–61

    Google Scholar 

  • Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Annu rev 28:177–276

    Google Scholar 

  • Sarnthein M, Pflaumann U, Weinelt M (2003) Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18:1047

    Google Scholar 

  • Sargsyn O, Wakeley J (2008) A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms. Theoret Pop Biol 74:104–114

    Google Scholar 

  • Saunders GW (2014) Long distance kelp rafting impacts seaweed biogeography in the northeast Pacific: the kelp conveyor hypothesis. J Phycol 50:968–974

    CAS  PubMed  Google Scholar 

  • Sears JR. (ed.) (2002) NEAS keys to benthic marine algae of the northeastern coast of North America from Long Island Sound to the Strait of Belle Isle. 2nd edition. Express Printing, Fall River, MA. NEAS Contribution Number 2

  • Selivanova OH, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the far-eastern seas of Russia on the basis of molecular-phylogenetic data. Russ J Mar Biol 33:278–289

    Google Scholar 

  • Shaw J (2006) Palaeogeography of Atlantic Canadian continental shelves from the Last Glacial Maximum to the Present, with an emphasis on Flemish Cap. J Northw Atl Fish Sci 37:119–126

    Google Scholar 

  • Silberfeld T, Leigh JW, Verbruggen H et al (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56:659–674

    CAS  PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the World: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Google Scholar 

  • Spratt RM, Lisiecki LE (2016) A Lake Pleistocene sea level stack. Clim Past 12:1079–1092

    Google Scholar 

  • Starko S, Gomez MS, Darby H et al (2019) A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol Phylogenet Evol 136:138–150

    PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Väinölä R (2003) Repeated trans-Arctic invasions in littor4al bivalves: molecular zoogeography of the Macoma balthica complex. Mar Biol 143:935–946

    Google Scholar 

  • van den Hoek C (1987) The possible significance of long-range dispersal for the biogeography of seaweeds. Helgoländer Meeeresunters 41:261–272

    Google Scholar 

  • van Oppen MJH, Draisma SGA, Olsen JL, Stam WT (1995) Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar Biol 123:179–188

    Google Scholar 

  • Vermeij GJ (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281–307

    Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E et al (2002) Sea-level and deep water temparature changes derived from benthic foraminifera isotopic records. Quatern Sci Revs 21:295–305

    Google Scholar 

  • Wilce RT, Dunton KH (2014) The boulder Patch (North Alaska, Beaufort Sea) and its benthic algal flora. Arctic 67:43–56

    Google Scholar 

  • Withler R, Beacham T, Schulze A, Richards L, Miller K (2001) Co-existing populations of Pacific ocean perch, Sebastes alutus, in Queen Charlotte Sound, British Columbia. Mar Biol 139:1–12

    Google Scholar 

  • Zhang J, Yao J-T, Sun Z-M et al (2015) Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 15:237

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Heather Liller, Mandy Lindeberg, and Scott Walker helped to collect samples in Alaska. Among personnel at the Alaska Department of Fish and Game (ADFG), Judy Berger catalogued the samples and Eric Lardizabal maintain the database of sample information. Paul Kuriscak, Mariel Terry, Zach Pechacek, Nick Ellickson and Chase Jalbert extracted DNA from the samples and Wei Cheng supervised the sequencing. Geir Johnsen, Elen Belseth, Jørgen Berge, and Tove Gabrielsen helped to collect samples from the Svalbard Archipelago. Thanks to Sandra Lindstrom and Sam Starko for guidance. The NE Pacific portion of this project was funded by the North Pacific Research Board Project 1618, by the general fund of the ADFG to WSG, and by the University of Melbourne McKenzie Postdoctoral Fellowship to TTB. The Svalbard collections were partially funded by the University Centre in Svalbard (UNIS), and supplies and equipment for DNA extraction/sequencing of these samples were partially funded by California State University Council on Ocean Affairs, Science, and Technology and by a grant provided to Mark Moline, University of Delaware, Lewes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Stewart Grant.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, W.S., Lydon, A. & Bringloe, T.T. Phylogeography of split kelp Hedophyllum nigripes: northern ice-age refugia and trans-Arctic dispersal. Polar Biol 43, 1829–1841 (2020). https://doi.org/10.1007/s00300-020-02748-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02748-6

Keywords

Navigation