Skip to main content
Log in

Prostate cancer detection among readers with different degree of experience using ultra-high b-value diffusion-weighted Imaging: Is a non-contrast protocol sufficient to detect significant cancer?

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Aim

To evaluate the accuracy of a T2-weighted (T2w) – and a parallel transmit zoomed b = 2000 s/mm2 (b2000) – diffusion-weighted imaging sequence among three readers with different degrees of experience for prostate cancer (Pca) detection.

Methods

Ninety-three patients with suspected Pca were enrolled. For b2000 a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory was applied, and the field of view (FOV) was reduced to one-third. All three readers (Reader A: 7, B 4 and C <1 years of experience in prostate MRI) independently evaluated b2000 with regard to the presence of suspicious lesions that displayed increased signal. The results were compared to histopathology obtained by real-time MR/ultrasound fusion and systematic biopsy.

Results

In 62 patients Pca was confirmed. One significant Pca (Gleason score (GS) 7b) was missed by Reader C. Overall, sensitivity/specificity/positive predictive value/negative predictive value were 90/71/86/79% for Reader A, 87/84/92/76% for Reader B and 85/74/87/72% for Reader C, respectively. Detection rates for significant Pca (GS >7a) were 100/100/94% for Readers A/B/C, respectively. Inter-reader agreement was generally good (Kappa A/B: 0.8; A/C: 0.82; B/C: 0.74).

Conclusion

B2000 in combination with a T2w could be useful to detect clinically significant Pca.

Key Points

Significant prostate cancer using zoomed ultra-high b-value DWI was detected.

Diagnostic performance among readers with different degrees of experience was good.

mp- MRI of the prostate using a comprehensive non-contrast protocol is clinically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

DWI:

Diffusion-weighted imaging

DCE:

Dynamic contrast-enhanced imaging

ET:

Echo time

FOV:

Field of view

GS:

Gleason score

HIFU:

High intensity focused ultrasound

mp:

Multiparametric

NPV:

Negative predictive value

b2000:

Parallel transmit zoomed b = 2000 s/mm2 -sequence

PPV:

Positive predictive value

Pca:

Prostate cancer

PI-RADS:

v2 Prostate imaging reporting and data system version 2

PSA:

Prostate specific antigen (PSA)

SS:

Sensitivity

SI:

Signal-intensity

SNR:

Signal-to-noise ratio

SP:

Specificity

T2w:

T2-weighted

TRUS:

Transrectal ultrasound

US:

Ultrasound

References

  1. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al (2014) EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65:124–137

    Article  PubMed  Google Scholar 

  2. Cerantola Y, Dragomir A, Tanguay S, Bladou F, Aprikian A, Kassouf W (2016) Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urol Oncol 34:119 e1–9

    Article  PubMed  Google Scholar 

  3. Rosenkrantz AB, Lim RP, Haghighi M, Somberg MB, Babb JS, Taneja SS (2013) Comparison of interreader reproducibility of the prostate imaging reporting and data system and likert scales for evaluation of multiparametric prostate MRI. AJR Am J Roentgenol 201:W612–W618

    Article  PubMed  Google Scholar 

  4. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F et al (2016) Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur Urol 69:41–49

    Article  PubMed  Google Scholar 

  6. Vargas HA, Hotker AM, Goldman DA, Moskowitz CS, Gondo T, Matsumoto K, Ehdaie B, Woo S, Fine SW, Reuter VE, Sala E, Hricak H (2016) Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol 26(6):1606–1612

  7. Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP et al (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Investig Radiol 50:743–748

    Article  CAS  Google Scholar 

  8. Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W et al (2015) High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Investig Radiol 50:805–810

    Article  CAS  Google Scholar 

  9. Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791

    Article  PubMed  Google Scholar 

  10. Wetter A, Nensa F, Lipponer C, Guberina N, Olbricht T, Schenck M et al (2015) High and ultra-high b-value diffusion-weighted imaging in prostate cancer: a quantitative analysis. Acta Radiol 56:1009–1015

    Article  PubMed  Google Scholar 

  11. Katahira K, Takahara T, Kwee TC, Oda S, Suzuki Y, Morishita S et al (2011) Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 21:188–196

    Article  PubMed  Google Scholar 

  12. Bittencourt LK, Attenberger UI, Lima D, Strecker R, de Oliveira A, Schoenberg SO et al (2014) Feasibility study of computed vs measured high b-value (1400 s/mm(2)) diffusion-weighted MR images of the prostate. World J Radiol 6:374–380

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO et al (2014) Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses. PLoS One 9, e89468

    Article  PubMed  PubMed Central  Google Scholar 

  14. Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO et al (2014) Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses. Eur Radiol 24:2507–2512

    Article  PubMed  Google Scholar 

  15. Attenberger UI, Rathmann N, Sertdemir M, Riffel P, Weidner A, Kannengiesser S, Morelli JN, Schoenberg SO, Hausmann D (2016) Small field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses. Z Med Phys 26(2):168–176

  16. Thierfelder KM, Scherr MK, Notohamiprodjo M, Weiss J, Dietrich O, Mueller-Lisse UG et al (2014) Diffusion-weighted MRI of the prostate: advantages of Zoomed EPI with parallel-transmit-accelerated 2D-selective excitation imaging. Eur Radiol 24:3233–3241

    Article  PubMed  Google Scholar 

  17. Jambor I, Kahkonen E, Taimen P, Merisaari H, Saunavaara J, Alanen K et al (2015) Prebiopsy multiparametric 3T prostate MRI in patients with elevated PSA, normal digital rectal examination, and no previous biopsy. J Magn Reson Imaging: JMRI 41:1394–1404

    Article  PubMed  Google Scholar 

  18. Ghai S, Louis AS, Van Vliet M, Lindner U, Haider MA, Hlasny E et al (2015) Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. AJR Am J Roentgenol 205:W177–W184

    Article  PubMed  Google Scholar 

  19. Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Futterer JJ, Gill IS et al (2013) Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol 64:544–552

    Article  PubMed  Google Scholar 

  20. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822

    Article  PubMed  Google Scholar 

  21. Stark JR, Perner S, Stampfer MJ, Sinnott JA, Finn S, Eisenstein AS et al (2009) Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin Oncol 27:3459–3464

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cash H, Gunzel K, Maxeiner A, Stephan C, Fischer T, Durmus T, Miller K, Asbach P, Haas M, Kempkensteffen C (2016) Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int 118(1):35–43

  23. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA et al (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 40:244–252

    PubMed  Google Scholar 

  24. Futterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A et al (2015) Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. Eur Urol 68:1045–1053

    Article  PubMed  Google Scholar 

  25. Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261:46–66

    Article  PubMed  Google Scholar 

  26. Scheenen TW, Rosenkrantz AB, Haider MA, Futterer JJ (2015) Multiparametric magnetic resonance imaging in prostate cancer management: current status and future perspectives. Investig Radiol 50:594–600

    Article  CAS  Google Scholar 

  27. Schouten MG, Hoeks CM, Bomers JG (2015) Hulsbergen-van de Kaa CA, Witjes JA, Thompson LC, et al. Location of prostate cancers determined by multiparametric and MRI-guided biopsy in patients with elevated prostate-specific antigen level and at least one negative transrectal ultrasound-guided biopsy. AJR Am J Roentgenol 205:57–63

    Article  PubMed  Google Scholar 

  28. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection – histopathologic correlation. Radiology 255:89–99

    Article  PubMed  PubMed Central  Google Scholar 

  29. Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, 2nd Renzulli JF (2010) Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol 194:W316–W322

    Article  PubMed  Google Scholar 

  30. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495

    Article  PubMed  PubMed Central  Google Scholar 

  31. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H (2011) Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging: JMRI 33:167–172

    Article  PubMed  Google Scholar 

  32. Hoeks CM, Futterer JJ, Somford DM, van Oort IM, Huisman H, Barentsz JO (2009) Multiparametric MRI for prostate cancer screening. Ned Tijdschr Geneeskd 153:B487

    PubMed  Google Scholar 

  33. Agarwal HK, Mertan FV, Sankineni S, Bernardo M, Senegas J, Keupp J et al (2017) Optimal high b-value for diffusion weighted MRI in diagnosing high risk prostate cancers in the peripheral zone. J Magn Reson Imaging 45:125–131

    Article  PubMed  Google Scholar 

  34. Maas MC, Futterer JJ, Scheenen TW (2013) Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Invest Radiol 48:779–786

    Article  PubMed  Google Scholar 

  35. Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C et al (2007) Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results. Radiology 245:176–185

    Article  PubMed  Google Scholar 

  36. Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hausmann.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Dr. med. Stefan Schönberg.

Conflict of interest

The authors of this manuscript declare research agreements with Siemens Healthcare.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausmann, D., Aksöz, N., von Hardenberg, J. et al. Prostate cancer detection among readers with different degree of experience using ultra-high b-value diffusion-weighted Imaging: Is a non-contrast protocol sufficient to detect significant cancer?. Eur Radiol 28, 869–876 (2018). https://doi.org/10.1007/s00330-017-5004-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5004-8

Keywords

Navigation