Skip to main content
Log in

The development of composite dispersal functions for estimating absolute pollen productivity in the Swiss Alps

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Considering the complexity of real-world pollen dispersal, a single set of parameters may be inadequate to model pollen dispersal, especially as dispersal occurs on both local and regional scales. Here we combine more than one dispersal function into a composite dispersal function (CDF). The function incorporates multiple parameters and different modes of pollen transportation, and thus has the potential to better simulate the relationship between deposited pollen and the surrounding vegetation than would otherwise be possible. CDFs based on different dispersal functions and combinations of dispersal functions were evaluated using a pollen-trap dataset from the Swiss Alps. Absolute pollen productivity (APP) was estimated at 7,700 ± 2,000 grains cm−2 year−1 for Larix decidua, 13,500 ± 1,900 grains cm−2 year−1 for Picea abies and 95,600 ± 17,700 grains cm−2 year−1 for Pinus cembra (with 95% confidence level). The results are consistent with previous APP estimates made from the same dataset using different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen ST (1970) The relative pollen productivity and pollen representativity of North European trees and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelser Ser II 96:1–99

    Google Scholar 

  • Brändli U-B, Heller-Kellenberger I, Speich S (2004) Schweizerisches Landesforstinventar LFI. Eidg. Forschungsanstalt WSL, Birmensdorf. http://www.lfi.ch

  • Broström A, Hjelle K, Nielsen AB, Binney H, Bunting MJ, Fyfe R, Gaillard M-J, Mazier F, Meltsov V, Poska A, Räsänen S, Soepboer W, von Stedingk H, Sugita S, Suutari H (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation—a review. Veget Hist Archaeobot 17:461–478

    Article  Google Scholar 

  • Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912

    Google Scholar 

  • Fægri K, Iversen J (1975) Textbook of pollen analysis, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Filipova-Marinova MV, Kvavadze EV, Connor SE, Sjögren S (2010) Estimating absolute pollen productivity for some European Tertiary-relict taxa. Veget Hist Archaeobot 19 (this volume)

  • Foxes Team (2007) Numeric calculus in Excel. Xnumbers tutorial, vol 1, 293 pp. http://digilander.libero.it/foxes

  • Giesecke T, Fontana S, van der Knaap WO, Pidek IA, Pardoe H (2010) From early pollen trapping experiments to the Pollen Monitoring Programme. Veget Hist Archaeobot 19 (this volume)

  • Hesselman H (1916) Yttrande med anledning av L. von Post’s föredrag om skogsträpollen i sydsvenska torfmosselagerföljder [Remarks concerning L. von Post’s lecture about the occurence of forest-tree pollen in south Swedish peat layers]. Geol Fören i Stockholm Förh 38:390–392

    Google Scholar 

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29

    Article  Google Scholar 

  • Jackson ST (1994) Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. In: Traverse A (ed) Sedimentation of organic particles. Cambridge University Press, Cambridge, pp 253–286

    Chapter  Google Scholar 

  • Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75

    Article  Google Scholar 

  • Janssen CR (1966) Recent pollen spectra from the deciduous and coniferous–deciduous forests of northeastern Minnesota: a study in pollen dispersal. Ecology 47:805–825

    Article  Google Scholar 

  • Kabailiene MR (1969) Formirovanie pyl`tsevykh spektrov i metody vosstanovleniya paleorastitel`nosti [On formation of pollen spectra and reconstruction of vegetation]. Ministerstvo Geologii SSSR Institut Geologii (Vil’nyus) Trudy 11:1–148

    Google Scholar 

  • Lanner RM (1966) Needed: a new approach to pollen dispersal. Silvae Genet 15:50–52

    Google Scholar 

  • Pardoe H, Giesecke T, van der Knaap WO, Svitavská-Svobodová H, Kvavadze E, Panajiotidis S, Gerasimidis A, Pidek IA, Zimny M, Święta-Musznicka J, Latałowa M, Noryśkiewicz AM, Bozilova E, Tonkov S, Filipova-Marinova M, van Leeuwen JFN, Kalniņa L (2010) Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. Veget Hist Archaeobot 19 (this volume)

  • Parsons RW, Prentice IC (1981) Statistical approaches to R-values and the pollen–vegetation relationship. Rev Palaeobot Palynol 32:127–152

    Article  Google Scholar 

  • Peters ME, Higuera PE (2007) Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quat Res 67:304–310

    Article  Google Scholar 

  • Pidek IA, Svitavská-Svobodová H, van der Knaap WO, Noryśkiewicz A, Filbrandt-Czaja A, Noryśkiewicz B, Latałowa M, Zimny M, Święta-Musznicka J, Bozilova E, Tonkov S, Filipova-Marinova M, Poska A, Giesecke T, Gikov A (2010) Variation in annual pollen accumulation rates of Fagus along a N-S transect in Europe based on pollen traps. Veget Hist Archaeobot 19 (this volume)

  • Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Prentice IC, Parsons RW (1983) Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 29:1051–1057

    Article  Google Scholar 

  • Prentice IC, Berglund BE, Olsson T (1987) Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas 16:43–54

    Article  Google Scholar 

  • Rempe H (1937) Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen. Planta 27:93–147

    Article  Google Scholar 

  • Sjögren P, van der Knaap WO, Huusko A, van Leeuwen JFN (2008a) Pollen productivity, dispersal and representation factors of major tree taxa in the European Alps based on pollen trap results. Rev Palaeobot Palynol 152:200–210

    Article  Google Scholar 

  • Sjögren P, van der Knaap WO, Kaplan JO, van Leeuwen JFN, Ammann B (2008b) A pilot study on pollen representation of mountain valley vegetation in the central Alps. Rev Palaeobot Palynol 149:208–218

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Sugita S, Hicks S, Sormunen H (2009) Absolute pollen productivity and pollen–vegetation relationships in northern Finland. J Quat Sci. doi:10.1002/jqs.1349

  • Sutton OG (1953) Micrometerology. McGraw-Hill, New York

    Google Scholar 

  • Tauber H (1965) Differential pollen dispersion and the interpretation of pollen diagrams. C.A. Reitzels Forlag, Copenhagen

    Google Scholar 

  • van der Knaap WO, van Leeuwen JFN, Ammann B (2001) Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Rev Palaeobot Palynol 117:31–52

    Article  Google Scholar 

  • Wright JW (1953) Pollen dispersion studies: some practical applications. J For 51:114–118

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Sheila Hicks for her inspiring work with both absolute pollen data and pollen/vegetation relationships, exemplified by her prominent role in both the PMP and POLLANDCAL. Jacqueline van Leeuwen analysed the pollen content of the original dataset and Antti Huusko provided a user-friendly Excel formula for Sutton’s equation, both prerequisites for the investigation. The reviewers Anne Birgitte Nielsen and Jane Bunting provided insightful comments and improved the final version of the paper. This research is part of the Pollen Monitoring Programme PMP (INQUA working group; http://pmp.oulu.fi/) and contributes to the European Union project Millennium—European climate of the last millennium (SUSTDEV-2004-3.1.4.1) and the Research Council of Norway project DYLAN—How to manage dynamic landscapes? (190044/S30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Sjögren.

Additional information

Communicated by T. Giesecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögren, P., Connor, S.E. & van der Knaap, W.O. The development of composite dispersal functions for estimating absolute pollen productivity in the Swiss Alps. Veget Hist Archaeobot 19, 341–349 (2010). https://doi.org/10.1007/s00334-010-0247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-010-0247-1

Keywords

Navigation