Skip to main content
Log in

Diversification of TOLLIP isoforms in mouse and man

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Toll-interacting protein TOLLIP is an ubiquitin-binding protein that interacts with several components of the Toll-like receptor signaling cascade. The canonical protein consists of three annotated domains: an N-terminal TBD-loop-coil domain that mediates protein-protein interactions, a C2 domain that targets TOLLIP to the endosome, and a CUE domain at the C-terminus that binds monoubiquitin. TOLLIP has been described primarily in trafficking of the interleukin-1 receptor (IL1R) and turnover of the interleukin-1 receptor-associated kinase (IRAK), so it is an essential regulator of inflammatory signaling. Here we describe the expression of numerous alternate transcripts from mouse and human TOLLIP, which are predicted to generate at least five variant proteins between the two species. Most of the variant proteins are predicted to have altered N-terminal domains, altered TBD-loop-coil domains, or a truncated C2 domain. A mouse-specific variant arises from an alternate termination exon, and the resulting protein lacks the CUE domain. Two transcripts arising from alternate initiating exons are highly conserved between mouse and human but exhibit different patterns of expression. The consequent protein isoforms retain (TOLLIP.A) or lack (TOLLIP.D) the protein-binding TBD, so are predicted to traffic monoubiquitinated proteins to alternate protein complexes within the endosomal compartment. In summary, the widespread and inducible expression of Tollip isoforms predicts diversification of its function in rodent and human immune systems. Alternate splicing of critical signaling molecules such as Tollip may provide one mechanism behind the broad repertoire of responses generated by cells of the innate immune system in response to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95

    Article  PubMed  CAS  Google Scholar 

  • Alekseyenko AV, Kim N, Lee CJ (2007) Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13:661–670

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Trowsdale J (2000) The human major histocompatibility complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet 1:117–137

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Rehli M (2002) Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 270:1–21

    PubMed  CAS  Google Scholar 

  • Brissoni B, Agostini L, Kropf M, Martinon F, Swoboda V et al (2006) Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr Biol 16:2265–2270

    Article  PubMed  CAS  Google Scholar 

  • Burk O, Worpenberg S, Haenig B, Klempnauer KH (1997) tom-1, a novel v-Myb target gene expressed in AMV- and E26-transformed myelomonocytic cells. EMBO J 16:1371–1380

    Article  PubMed  CAS  Google Scholar 

  • Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C et al (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2:346–351

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Sandelin TA, Lenhard B, Katayama S, Shimokawa K et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11

    Article  PubMed  Google Scholar 

  • Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  PubMed  CAS  Google Scholar 

  • Didierlaurent A, Brissoni B, Velin D, Aebi N, Tardivel A et al (2006) Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol 26:735–742

    Article  PubMed  CAS  Google Scholar 

  • Dodd RB, Drickamer K (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11:71R–79R

    Article  PubMed  CAS  Google Scholar 

  • Ermakova EO, Nurtdinov RN, Gelfand MS (2006) Fast rate of evolution in alternatively spliced coding regions of mammalian genes. BMC Genomics 7:84

    Article  PubMed  Google Scholar 

  • Hardy MP, O’Neill LAJ (2004) The murine Irak2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 279:27699–27708

    Article  PubMed  CAS  Google Scholar 

  • Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P et al (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R (2003) MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett 548:103–107

    Article  PubMed  CAS  Google Scholar 

  • Jaresova I, Rozkova D, Spisek R, Janda A, Brazova J et al (2007) Kinetics of Toll-like receptor-4 splice variants expression in lipopolysaccharide-stimulated antigen presenting cells of healthy donors and patients with cystic fibrosis. Microbes Infect 9:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Kaiko GE, Horvat JC, Beagley KW, Hansbro PM (2008) Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 123:326–338

    Article  PubMed  CAS  Google Scholar 

  • Karolchik D, Bejerano G, Hinrichs AS, Kuhn RM, Miller W et al (2007) Comparative genomic analysis using the UCSC genome browser. Methods Mol Biol 395:17–34

    PubMed  CAS  Google Scholar 

  • Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H et al (2004) Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 279:24435–24443

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  PubMed  CAS  Google Scholar 

  • Li T, Hu J, Li L (2004) Characterization of Tollip protein upon lipopolysaccharide challenge. Mol Immunol 41:85–92

    Article  PubMed  CAS  Google Scholar 

  • Lynch K (2004) Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 4:931–940

    Article  PubMed  CAS  Google Scholar 

  • Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  PubMed  CAS  Google Scholar 

  • Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177–180

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    Article  PubMed  CAS  Google Scholar 

  • Nurtdinov RN, Artamonova II, Mironov AA, Gelfand MS (2003) Low conservation of alternative splicing patterns in the human and mouse genomes. Hum Mol Genet 12:1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer 3. Available at http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

  • Sester DP, Trieu A, Brion K, Schroder K, Ravasi T et al (2005) LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action. Immunobiology 210:97–107

    Article  PubMed  CAS  Google Scholar 

  • Shih SC, Prag G, Francis SA, Sutanto MA, Hurley JH et al (2003) A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J 22:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  • Taylor TD, Noguchi H, Totoki Y, Toyoda A, Kuroki Y et al (2006) Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature 440:497–500

    Article  PubMed  CAS  Google Scholar 

  • Thanaraj TA, Clark F, Muilu J (2003) Conservation of human alternative splice events in mouse. Nucleic Acids Res 31:2544–2552

    Article  PubMed  CAS  Google Scholar 

  • Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1): S12.1–S12.14

    Google Scholar 

  • Wells C, Ravasi T, Hume DA (2005) Immune suppressor genes: please switch out all the lights. J Leukoc Biol 78:9–13

    Article  PubMed  CAS  Google Scholar 

  • Wells CA, Chalk AM, Forrest A, Taylor D, Waddell N et al (2006) Alternate transcription of the Toll-like receptor signaling cascade. Genome Biol 7:R10

    Article  PubMed  Google Scholar 

  • Yamakami M, Yoshimori T, Yokosawa H (2003) Tom1, a VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J Biol Chem 278:52865–52872

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Ghosh S (2002) Negative regulation of Toll-like receptor-mediated signaling by Tollip. J Biol Chem 277:7059–7065

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Andrew Pritchard for technical laboratory assistance, and Simone Chmielewski and Ms. Jo McLintock for their invaluable assistance managing the mouse colonies. This work was supported by the Australian Research Council (grant DP0665078), which also provided YSL with a Ph.D. scholarship. AGB was funded through Australian federal government support of the National Centre for Adult Stem Cell Research. CAW was supported by the National Health and Medical Research Council Career Development Award CDA_481945.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Wells.

Additional information

Y.-L. S. Lo and A. G. Beckhouse contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2009_9188_MOESM1_ESM.pdf

Melt curves from qRT-PCR for human primer pairs (A) TOLLIP.A, (B) TOLLIP.B, and (C) TOLLIP.C to demonstrate measurement of a single amplicon to determine variant transcript expression. Y axis is fluorescence, X axis is cycle number. Detection threshold indicated by horizontal line. Template indicated by coloured products: red, pTOLLIPA; blue, pTOLLIPB; green, pTOLLIPC; pink, no template control (NTC). Figures were generated from the Corbett Rotorgene 6000 analysis software (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, YL.S., Beckhouse, A.G., Boulus, S.L. et al. Diversification of TOLLIP isoforms in mouse and man. Mamm Genome 20, 305–314 (2009). https://doi.org/10.1007/s00335-009-9188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9188-3

Keywords

Navigation