Skip to main content
Log in

The circadian gene Arntl2 on distal mouse chromosome 6 controls thymocyte apoptosis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Nonobese diabetic (NOD) mice are a model for type 1 diabetes that displays defects in central immune tolerance, including impairment of thymocyte apoptosis and proliferation. Thymocyte apoptosis is decreased in NOD/Lt mice compared to nondiabetic C3H/HeJ and C57BL/6 mice. Analysis of a set of NOD.C3H and NOD.B6 congenic mouse strains for distal chromosome 6 localizes the phenotype to the 700 kb Idd6.3 interval. Idd6.3 contains the type 1 diabetes candidate gene aryl hydrocarbon receptor nuclear translocator-like 2 (Arntl2), encoding a circadian rhythm-related transcription factor. Newly generated Arntl2 −/− mouse strains reveal that inactivation of the B6 allele of Arntl2 is sufficient to both decrease thymocyte apoptosis and proliferation. When expressed from C3H or B6 alleles, ARNTL2 inhibits the transcription of interleukin 21 (Il21), a major player in the regulation of immune responses. IL-21 injection abolishes the B6 allele-mediated decrease of apoptosis and proliferation. Interestingly, IL-21 also leads to an increase in thymic proinflammatory Th17 helper cells. Our results identify Arntl2 as a gene controlling thymocyte apoptosis and proliferation along with Th17 development through the IL-21 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bergman ML, Penha-Goncalves C, Lejon K, Holmberg D (2001) Low rate of proliferation in immature thymocytes of the non-obese diabetic mouse maps to the Idd6 diabetes susceptibility region. Diabetologia 44:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Bergman ML, Duarte N, Campino S, Lundholm M, Motta V, Lejon K, Penha-Goncalves C, Holmberg D (2003) Diabetes protection and restoration of thymocyte apoptosis in NOD Idd6 congenic strains. Diabetes 52:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Carnaud C, Gombert J, Donnars O, Garchon H, Herbelin A (2001) Protection against diabetes and improved NK/NKT cell performance in NOD.NK1.1 mice congenic at the NK complex. J Immunol 166:2404–2411

    Article  CAS  PubMed  Google Scholar 

  • Deenick EK, Tangye SG (2007) Autoimmunity: IL-21: a new player in Th17-cell differentiation. Immunol Cell Biol 85:503–505

    Article  CAS  PubMed  Google Scholar 

  • Duarte N, Lundholm M, Holmberg D (2007) The Idd6.2 diabetes susceptibility region controls defective expression of the Lrmp gene in nonobese diabetic (NOD) mice. Immunogenetics 59:407–416

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen KS, Lundsgaard D, Freeman JA, Hughes SD, Holm TL, Skrumsager BK, Petri A, Hansen LT, McArthur GA, Davis ID, Skak K (2008) IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother 57:1439–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guler ML, Ligons DL, Wang Y, Bianco M, Broman KW, Rose NR (2005) Two autoimmune diabetes loci influencing T cell apoptosis control susceptibility to experimental autoimmune myocarditis. J Immunol 174:2167–2173

    Article  CAS  PubMed  Google Scholar 

  • He CX, Avner P, Boitard C, Rogner UC (2010a) Downregulation of the circadian rhythm related gene Arntl2 suppresses diabetes protection in Idd6 NOD.C3H congenic mice. Clin Exp Pharmacol Physiol 37:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • He CX, Prevot N, Boitard C, Avner P, Rogner UC (2010b) Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2. Immunogenetics 62:585–592

    Article  CAS  PubMed  Google Scholar 

  • Hung MS, Avner P, Rogner UC (2006) Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 15:2732–2742

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Jun HS, Yang Y, Mora C, Mariathasan S, Ohashi PS, Flavell RA, Yoon JW (2005) Development of autoreactive diabetogenic T cells in the thymus of NOD mice. J Autoimmun 24:11–23

    Article  CAS  PubMed  Google Scholar 

  • Lebailly B, He C, Rogner UC (2014) Linking the circadian rhythm gene Arntl2 to interleukin 21 expression in type 1 diabetes. Diabetes 63:2148–2157

    Article  CAS  PubMed  Google Scholar 

  • Leijon K, Hammarstrom B, Holmberg D (1994) Non-obese diabetic (NOD) mice display enhanced immune responses and prolonged survival of lymphoid cells. Int Immunol 6:339–345

    Article  CAS  PubMed  Google Scholar 

  • McGuire HM, Vogelzang A, Hill N, Flodstrom-Tullberg M, Sprent J, King C (2009) Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proc Natl Acad Sci USA 106:19438–19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire HM, Walters S, Vogelzang A, Lee CM, Webster KE, Sprent J, Christ D, Grey S, King C (2011) Interleukin-21 is critically required in autoimmune and allogeneic responses to islet tissue in murine models. Diabetes 60:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingueneau M, Jiang W, Feuerer M, Mathis D, Benoist C (2012) Thymic negative selection is functional in NOD mice. J Exp Med 209:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteleone G, Pallone F, MacDonald TT (2008) Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses. Trends Immunol 29:290–294

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostiguy V, Allard EL, Marquis M, Leignadier J, Labrecque N (2007) IL-21 promotes T lymphocyte survival by activating the phosphatidylinositol-3 kinase signaling cascade. J Leukoc Biol 82:645–656

    Article  CAS  PubMed  Google Scholar 

  • Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC, Morse HC 3rd, Lipsky PE, Leonard WJ (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    Article  CAS  PubMed  Google Scholar 

  • Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G (2007) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178:732–739

    Article  CAS  PubMed  Google Scholar 

  • Penha-Goncalves C, Leijon K, Persson L, Holmberg D (1995) Type 1 diabetes and the control of dexamethazone-induced apoptosis in mice maps to the same region on chromosome 6. Genomics 28:398–404

    Article  CAS  PubMed  Google Scholar 

  • Rafei M, Dumont-Lagace M, Rouette A, Perreault C (2013a) Interleukin-21 accelerates thymic recovery from glucocorticoid-induced atrophy. PLoS One 8:e72801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafei M, Rouette A, Brochu S, Vanegas JR, Perreault C (2013b) Differential effects of gammac cytokines on postselection differentiation of CD8 thymocytes. Blood 121:107–117

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–171

    Article  CAS  PubMed  Google Scholar 

  • Rogner UC, Lepault F, Gagnerault MC, Vallois D, Morin J, Avner P, Boitard C (2006) The Diabetes Type 1 Locus Idd6 Modulates Activity of CD4+CD25+ Regulatory T-Cells. Diabetes 55:186–192

    Article  CAS  PubMed  Google Scholar 

  • Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smink LJ, Helton EM, Healy BC, Cavnor CC, Lam AC, Flamez D, Burren OS, Wang Y, Dolman GE, Burdick DB, Everett VH, Glusman G, Laneri D, Rowen L, Schuilenburg H, Walker NM, Mychaleckyj J, Wicker LS, Eizirik DL, Todd JA, Goodman N (2005) T1DBase, a community web-based resource for type 1 diabetes research. Nucleic Acids Res 33:D544–D549

    Article  CAS  PubMed  Google Scholar 

  • Sofi MH, Liu Z, Zhu L, Yu Q, Kaplan MH, Chang CH (2010) Regulation of IL-17 expression by the developmental pathway of CD4 T cells in the thymus. Mol Immunol 47:1262–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spolski R, Leonard WJ (2014) Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 13:379–395

    Article  CAS  PubMed  Google Scholar 

  • Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci USA 105:14028–14033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart S, Dykxhoorn DMPD, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, Grusby MJ, von Herrath M (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Laurence A, Elias KM, O’Shea JJ (2007) IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 282:34605–34610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Gustafson CL, Sammons PJ, Khan SK, Parsley NC, Ramanathan C, Lee HW, Liu AC, Partch CL (2015) Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat Struct Mol Biol 22:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng R, Spolski R, Casas E, Zhu W, Levy DE, Leonard WJ (2007) The molecular basis of IL-21-mediated proliferation. Blood 109:4135–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Pierre-Henri Commère, Corinne Veron, Chantal Bécourt, Gaelle Chauveau-Le Friec and Abokouo Zago for technical assistance, and Roberto Mallone for correcting the manuscript. The authors acknowledge the financial support of their work by Laboratoire d’Excellence Revive (Investissement d’Avenir; ANR-10-LABX-73), European Foundation for the Study of Diabetes (EFSD)/Juvenile Diabetes Research Foundation (JDRF)/Novo Nordisk Programme, Domaine d’intérêt majeur (DIM): Cardiovasculaire-Obésité-Rein-Diabète (CORDDIM) and by recurrent funding from the Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM) and Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Christine Rogner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2016_9665_MOESM1_ESM.eps

Online Resource 1: Genetic configuration for distal chromosome 6 (GRCm38.p4) of the different mouse strains. C3H alleles are indicated by grey boxes, NOD alleles by white boxes, B6 alleles by black boxes. NOD.C3H congenic strains: 6.VIII, 6.VIIIa-c; Arntl2 -/- strains: NT28 and N.B62A-; Idd6 NOD.B6 congenic strains: N.B6, N.B6A-. Idds, markers and positions in Mb are shown to the left; +/+ = wildtype Arntl2, -/- mutated Arntl2. Supplementary material 1 (EPS 2020 kb)

335_2016_9665_MOESM2_ESM.eps

Online Resource 2: Examples of cytometric analyses. a) Selection of the lymphocytes (left panel), selection of the different types of lymphocytes in the thymus: DP = CD4+CD8+, DN = CD4-CD8- (middle panel) and selection of splenic CD4+ T cells (right panel); b) Characterization of apoptotic cells at early stage using annexin V (AnV) and propidium iodide (PI) in the thymus of mice from strain N.B6 (middle panel) and N.B6A2- (right panel); c) Characterization of the CD4+IL-21+ and CD4+IL-17+ cells in the thymus of mice from strain N.B6 (middle panel) and N.B6A2- (right panel) compared to an unstimulated sample (left panel). Supplementary material 2 (EPS 678 kb)

335_2016_9665_MOESM3_ESM.eps

Online Resource 3: Diabetes incidence a) spontaneously in the NOD (n=50), N.B6A2- (n=22) and N.B6 (n=27) strains. P-values: NOD versus N.B6A2- =0.012; NOD versus N.B6 <0.009; N.B6A2- versus N.B6 =0.947. b) Diabetes incidence after transfer to NOD/SCID mice of NOD (n=15), N.B6A2- (n=15) and N.B6 (n=15) CD25- splenocytes (5.5 x 106). P-values: NOD versus N.B6A2- =0.617; NOD versus N.B6 <0.0001; N.B6A2- versus N.B6 =0.001. (Roche, Mannheim, Germany). Animals were considered diabetic when their urine glucose level exceeded 250 mg/dL. Time-to-event distributions were calculated by Kaplan-Meier estimation and compared by log-rank tests during the period of observation. Supplementary material 3 (EPS 251 kb)

(P_values_numbers) Tables of P-Values for all strains. Supplementary material 4 (PDF 41 kb)

Supplementary material 5 (PDF 43 kb)

Supplementary material 6 (PDF 45 kb)

Supplementary material 7 (PDF 36 kb)

Supplementary material 8 (PDF 37 kb)

Supplementary material 9 (PDF 41 kb)

Supplementary material 10 (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebailly, B., Langa, F., Boitard, C. et al. The circadian gene Arntl2 on distal mouse chromosome 6 controls thymocyte apoptosis. Mamm Genome 28, 1–12 (2017). https://doi.org/10.1007/s00335-016-9665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9665-4

Keywords

Navigation