Skip to main content

Advertisement

Log in

The promiscuous larvae: flexibility in the establishment of symbiosis in corals

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abrego D, van Oppen MJH, Willis BL (2009a) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    Article  PubMed  Google Scholar 

  • Abrego D, van Oppen MJH, Willis BL (2009b) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

  • Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete spawning scleractinian corals. Coral Reefs 5:111–116

    Article  Google Scholar 

  • Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Baird AH, Bhagooli R, Nonaka M, Yakovleva I, Yamamoto HH, Hidaka M, Yamasaki H (2010) Environmental controls on the establishment and development of algal symbiosis in corals. Proc 11th Int Coral Reef Symp 5:108-112

    Google Scholar 

  • Baker AC (1999) Symbiosis ecology of reef-building corals. Ph.D. thesis, University of Miami, p 120

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL (2011) Infection dynamics vary between symbiont types and cell surface treatments during establishment of endosymbiosis of coral larvae. Diversity 3:356–374

    Article  CAS  Google Scholar 

  • Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82

    Article  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc, B 273:2305–2312

    Article  Google Scholar 

  • Chang SS, Prezelin BB, Trench RK (1983) Mechanism of photoadaptation in 3 strains of the symbiotic dinoflagellate Symbiodinium-microadriaticum. Mar Biol 76:219–229

    Article  CAS  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987

    Article  PubMed  CAS  Google Scholar 

  • Correa AMS, McDonald DM, Baker AC (2009) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411

    Article  CAS  Google Scholar 

  • Cumbo VC (2012) The establishment of symbiosis in corals. Ph.D. thesis, James Cook University, p 198

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, New York

    Google Scholar 

  • Dunn SR, Weis VM (2009) Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism. Environ Microbiol 11:268–276

    Article  PubMed  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cabrera MD, Ortiz J, Loh W, Ward S, Hoegh-Guldberg O (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Harii S, Yasuda N, Rodriguez-Lanetty M, Irie T, Hidaka M (2009) Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Mar Biol 156:1203–1212

    Article  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: Coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa. Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2:116–120

    Article  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc, B 275:1359–1365

    Article  CAS  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: The host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the miocene-pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53

    Article  Google Scholar 

  • Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Mieog JC, van Oppen MJH, Berkelmans R, Stam WT, Olsen JL (2009a) Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Resources 9:74–82

    Article  CAS  Google Scholar 

  • Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJH (2009b) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS ONE 4:e6364

    Article  PubMed  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals - mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast-spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Mar Ecol Prog Ser 256:87–97

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  • Porto I, Granados C, Restrepo JC, Sánchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE 3:e2160

    Article  PubMed  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types of Symbiodinium in clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc, B 207:445–460

    Article  Google Scholar 

  • Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79

    Article  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts–Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida. Coral Reefs 31:157–167

    Article  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  PubMed  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373

    Article  PubMed  CAS  Google Scholar 

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH (2001) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20:200

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM-T, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc, B 268:1759–1767

    Article  Google Scholar 

  • van Oppen MJH, Mahiny AJ, Done TJ (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487

    Article  Google Scholar 

  • Venera-Ponton DE, Diaz-Pulido G, Rodriguez-Lanetty M, Hoegh-Guldberg O (2010) Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef. Coral Reefs 29:1049–1060

    Article  Google Scholar 

  • Wilkinson DM, Sherratt TN (2001) Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos 92:377–384

    Article  Google Scholar 

  • Yacobovitch T, Benayahu Y, Weis VM (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria). J Exp Mar Biol Ecol 298:35–48

    Article  Google Scholar 

  • Yakovleva IM, Baird AH, Yamamoto HH, Bhagooli R, Nonaka M, Hidaka M (2009) Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar Ecol Prog Ser 378:105–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by AIMS@JCU and the Lerner-Gray Memorial Fund of the American Museum of Natural History. We thank E. Graham, P. Cetina-Heredia, R. Littman and J. van Dam for assistance with this experiment, P. J. Edmunds and two anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Cumbo.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumbo, V.R., Baird, A.H. & van Oppen, M.J.H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013). https://doi.org/10.1007/s00338-012-0951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0951-7

Keywords

Navigation