Skip to main content

Advertisement

Log in

Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Significant diurnal variation in seawater carbonate chemistry occurs naturally in many coral reef environments, yet little is known of its effect on coral calcification. Laboratory studies on the response of corals to ocean acidification have manipulated the carbonate chemistry of experimental seawater to compare calcification rate changes under present-day and predicted future mean pH/Ωarag conditions. These experiments, however, have focused exclusively on differences in mean chemistry and have not considered diurnal variation. The aim of this study was to compare calcification responses of branching coral Acropora formosa under conditions with and without diurnal variation in seawater carbonate chemistry. To achieve this aim, we explored (1) a method to recreate natural diurnal variation in a laboratory experiment using the biological activities of a coral-reef mesocosm, and (2) a multi-laser 3D scanning method to accurately measure coral surface areas, essential to normalize their calcification rates. We present a cost- and time-efficient method of coral surface area estimation that is reproducible within 2% of the mean of triplicate measurements. Calcification rates were compared among corals subjected to a diurnal range in pH (total scale) from 7.8 to 8.2, relative to those at constant pH values of 7.8, 8.0 or 8.2. Mean calcification rates of the corals at the pH 7.8–8.2 (diurnal variation) treatment were not statistically different from the pH 8.2 treatment and were 34% higher than the pH 8.0 treatment despite similar mean seawater pH and Ωarag. Our results suggest that calcification of adult coral colonies may benefit from diurnal variation in seawater carbonate chemistry. Experiments that compare calcification rates at different constant pH without considering diurnal variation may have limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Horani FA, Tambutté É, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538

    Article  Google Scholar 

  • Bertucci A, Forêt S, Ball EE, Miller DJ (2015) Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol Ecol 24:4489–4504

    Article  CAS  PubMed  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B Biol Sci 190:323–331

    Article  CAS  PubMed  Google Scholar 

  • Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290

    Article  PubMed  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion H SO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL (2007) Guide to best practices for ocean CO2 measurements. In: Christian JR (ed) North Pacific Marine Science Organization. Sidney, British Columbia

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Dufault AM, Cumbo VR, Fan T-Y, Edmunds PJ (2012) Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proc R Soc B Biol Sci 279:2951–2958

    Article  CAS  Google Scholar 

  • Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410

    Article  CAS  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Holcomb M, Tambutté E, Allemand D, Tambutté S (2014) Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2:e375

    Article  PubMed  PubMed Central  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob Chang Biol 16:1632–1644

    Article  Google Scholar 

  • Kawaguti S, Sakumoto D (1948) The effect of light on the calcium deposition of corals. Bulletin of the Oceanographical Institute of Taiwan 4:65–70

    Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) CO2SYS program developed for the CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

    Book  Google Scholar 

  • Maas AE, Wishner KF, Seibel BA (2012) The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones. Biogeosciences 9:747–757

    Article  CAS  Google Scholar 

  • Manzello DP (2010) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248

    Article  CAS  Google Scholar 

  • Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Moya A, Tambutté S, Tambutté E, Zoccola D, Caminiti N, Allemand D (2006) Study of calcification during a daily cycle of the coral Stylophora pistillata: implications for ‘light-enhanced calcification’. J Exp Biol 209:3413–3419

    Article  CAS  PubMed  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799

    Article  CAS  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576

    Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS DOS program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Raz-Bahat M, Faibish H, Mass T, Rinkevich B (2009) Three-dimensional laser scanning as an efficient tool for coral surface area measurements. Limnol Oceanogr Methods 7:657–663

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2010) A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula. Coral Reefs 29:661–674

    Article  Google Scholar 

  • Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island. Great Barrier Reef. Geophys Res Lett 38:L03604

    Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res Oceans 117:C03038

    Article  Google Scholar 

  • Sholts SB, Wärmländer SKTS, Flores LM, Miller KWP, Walker PL (2010) Variation in the measurement of cranial volume and surface area sing 3D laser scanning technology. J Forensic Sci 55:871–876

    Article  PubMed  Google Scholar 

  • Silverman J, Kline DI, Johnson L, Rivlin T, Schneider K, Erez J, Lazar B, Caldeira K (2012) Carbon turnover rates in the One Tree Island reef: a 40-year perspective. J Geophys Res Biogeosci 117:G03023

    Article  Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–504

    Article  CAS  PubMed  Google Scholar 

  • Tynan S, Opdyke BN (2011) Effects of lower surface ocean pH upon the stability of shallow water carbonate sediments. Sci Total Environ 409:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Veal CJ, Holmes G, Nunez M, Hoegh-Guldberg O, Osborn J (2010) A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons Limnol Oceanogr. Methods 8:241–253

    Google Scholar 

  • Yates KK, Halley RB (2006) CO3 2− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat. Hawaii. Biogeosciences 3:357–369

    Article  CAS  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, Amsterdam, Netherlands

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Michael Ellwood for his support in project development, Linda McMorrow for assistance in Ca analyses, Aero Leplastrier for assistance in AT and pH analyses, Dr. Vianney Denis for statistical advice and Dr. Allen Chen for fruitful discussions. Thanks are also extended to Tim Maloney and Prof. Sue O’Connor for their generous support in multi-laser 3D scanning. We also thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. Chan.

Additional information

Communicated by Biology Editor Dr. Mark R. Patterson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Experimental setup for carbonate chemistry manipulation. a 1500-L coral-reef mesocosm with diurnal variation in pH between 7.8 and 8.2 driven by biological activity. b Automated water exchange system. ce 60-L aquaria at a steady pH of 7.8, 8.0 and 8.2, respectively (EPS 11906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, W.Y., Eggins, S.M. Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa . Coral Reefs 36, 763–772 (2017). https://doi.org/10.1007/s00338-017-1567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1567-8

Keywords

Navigation