Skip to main content
Log in

Metabolite pools of the reef building coral Montipora capitata are unaffected by Symbiodiniaceae community composition

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Some reef corals form stable, dominant or codominant associations with multiple endosymbiotic dinoflagellate species (family Symbiodiniaceae). Given the immense genetic and physiological diversity within this family, Symbiodiniaceae community composition has the potential to impact the nutritional physiology and fitness of the cnidarian host and all associated symbionts. Here we assessed the impact of the symbiont community composition on the metabolome of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i, where different colonies can be dominated by stress-tolerant Durusdinium glynnii or stress-sensitive Cladocopium spp. Based on our existing knowledge of these symbiont taxa, we hypothesised that the metabolite profile of D. glynnii-dominated corals would be consistent with poorer nutritional support of the host relative to those corals dominated by Cladocopium spp. However, comparative metabolite profiling revealed that the metabolite pools of the host and symbiont were unaffected by differences in the abundance of the two symbionts within the community. The abundance of the individual metabolites was the same in the host and in the endosymbiont regardless of whether the host was populated with D. glynnii or Cladocopium spp. These results suggest that coral-dinoflagellate symbioses have the potential to undergo physiological adjustments over time to accommodate differences in their resident symbionts. Such mechanisms may involve host heterotrophic compensation (increasing the level of nutrition generated by feeding relative to delivery from the algae), dynamic regulation of metabolic pathways when exchange of metabolites between the organisms differs, and/or modification of both the type and quantity of metabolites that are exchanged. We discuss these adjustments and the implications for the physiology and survival of reef corals under changing environmental regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berkelmans R, Van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, van Oppen MJ (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 70:317–340

    Google Scholar 

  • Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burriesci MS, Raab TK, Pringle JR (2012) Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215:3467–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantin NE, van Oppen MJ, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Cook CB, Davy SK (2001) Are free amino acids responsible for the host factor’ effects on symbiotic zooxanthellae in extracts of host tissue? Hydrobiologia 461:71–78

    Article  Google Scholar 

  • Cunning R, Baker AC (2013) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim. Change 3:259–262

    Article  Google Scholar 

  • Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunning R, Ritson-Williams R, Gates RD (2016) Patterns of bleaching and recovery of Montipora capitata in Kāne ‘ohe Bay, Hawai ‘i, USA. Mar Ecol Prog Ser 551:131–139

    Article  CAS  Google Scholar 

  • Cunning R, Gillette P, Capo T, Galvez K, Baker AC (2015a) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Article  Google Scholar 

  • Cunning R, Vaughan N, Gillette P, Capo T, Mate J, Baker AC (2015b) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology 96:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol Ecol Resour 12:369–373

    Article  PubMed  Google Scholar 

  • Gabay Y, Weis VM, Davy SK (2018) Symbiont identity influences patterns of symbiosis establishment, host growth, and asexual reproduction in a model cnidarian-dinoflagellate symbiosis. Biol Bull 234:1–10

    Article  PubMed  Google Scholar 

  • Grootveld M, Rodado VR (2014) Experimental design: sample collection, sample size, power calculations, essential assumptions and univariate approaches to metabolomics analysis. In: Metabolic profiling, pp 35–73

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hillyer KE, Dias D, Lutz A, Roessner U, Davy SK (2018) 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14:12

    Article  CAS  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8:11

    Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82

    Article  CAS  PubMed  Google Scholar 

  • Innis T, Cunning R, Ritson-Williams R, Wall C, Gates R (2018) Coral color and depth drive symbiosis ecology of Montipora capitata in Kāne ‘ohe Bay, O ‘ahu, Hawai ‘i. Coral Reefs 37:423–430

    Article  Google Scholar 

  • Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5:e10437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones A, Berkelmans R (2012) The photokinetics of thermo-tolerance in Symbiodinium. Mar Ecol 33:490–498

    Article  Google Scholar 

  • Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Biol 2011:1–12

    Article  Google Scholar 

  • Klueter A, Crandall JB, Archer FI, Teece MA, Coffroth MA (2015) Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Metabolites 5:74–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A (2015) Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. MBio 6:e02299-02214

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6:12

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’event. Proc R Soc Lond B: Biol Sci 276:4139–4148

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Leal MC, Hoadley K, Pettay DT, Grajales A, Calado R, Warner ME (2015) Symbiont type influences trophic plasticity of a model cnidarian–dinoflagellate symbiosis. J Exp Biol 218:858–863

    Article  PubMed  Google Scholar 

  • Little AF, van Oppen MJ, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857

    Article  CAS  PubMed  Google Scholar 

  • Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK (2018) Partner switching and metabolic flux in a model cnidarian–dinoflagellate symbiosis. Proc R Soc Lond B: Biol Sci 285:20182336

    CAS  Google Scholar 

  • Matthews JL, Crowder CM, Oakley CA, Lutz A, Roessner U, Meyer E, Grossman AR, Weis VM, Davy SK (2017) Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. PNAS 114:13194–13199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, van Oppen MJ (2009) The roles and interactions of symbiont, host and environment in defining coral fitness. PLoS One 4:e6364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miralles J, Diop M, Ferrer A, Kornprobst J-M (1989) Fatty acid composition of five zoantharia from the senegalese coast: Palythoa Dartevellei pax, P. monodi pax, P. Variabilis duerden, P. Senegalensis pax and their associated zooxanthellae and P. senegambiensis carter and its commensal, the decapoda Diogenes ovatus Miers. Comp Biochem Physiol B 94:91–97

    Article  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Oakley C, Davy S (2018) Cell Biology of coral bleaching coral bleaching. In: van Oppen MJH, Lough JM (eds) Coral bleaching. Springer, Cham, pp 189–211

    Chapter  Google Scholar 

  • Ott BM, Cruciger M, Dacks AM, Rio RV (2014) Hitchhiking of host biology by beneficial symbionts enhances transmission. Sci Rep 4:5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla-Gamino JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7:e38440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto RS, Rosado PM, Leite DCdA, Rosado AS, Bourne DG (2017) Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol 8:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, Schintlmeister A, Wagner M, Meibom A (2014) A nanosims study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol 17:3570–3580

    Article  PubMed  CAS  Google Scholar 

  • Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, Schintlmeister A, Wagner M, Meibom A (2015) A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol 17:3570–3580

    Article  CAS  PubMed  Google Scholar 

  • Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC (2015) Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. PNAS 112:7513–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–2252

    PubMed  PubMed Central  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Ritson-Williams R, Gates RD (2016) kaneohe bay seawater temperature data 2014 and 2015 [Data set]. Zenodo

  • Ritson-Williams R, Wall CB, Cunning R, Gates RD (2019) Kaneohe bay nutrient data 2014–2016 [dataset]. Zenodo

  • Rocker MM, Francis DS, Fabricius KE, Willis BL, Bay LK (2019) Temporal and spatial variation in fatty acid composition in Acropora tenuis corals along water quality gradients on the Great Barrier Reef, Australia. Coral Reefs 38:215–228

    Article  Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral–algal symbiosis. Front Microbiol 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachs JL, Wilcox TP (2005) A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc R Soc Lond B: Biol Sci 273:425–429

    Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. PNAS 105:10444–10449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol 21:236–249

    Article  PubMed  Google Scholar 

  • Smart KF, Aggio RB, Van Houtte JR, Villas-Boas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protoc 5:1709–1729

    Article  CAS  PubMed  Google Scholar 

  • Starzak DE, Quinnell RG, Nitschke MR, Davy SK (2014) The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. Mar Biol 161:711–724

    Article  CAS  Google Scholar 

  • Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:1–9

    Article  Google Scholar 

  • Stat M, Yost DM, Gates RD (2015) Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands. Coral Reefs 34:1075–1086

    Article  Google Scholar 

  • Stat M, Pochon X, Franklin EC, Bruno JF, Casey KS, Selig ER, Gates RD (2013) The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol Evol 3:1317–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suggett DJ, Warner ME, Leggat W (2017) Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol Evol 32:735–745

    Article  PubMed  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Trench R (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:485–531

    Article  CAS  Google Scholar 

  • van Oppen MJ, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. PNAS 112:2307–2313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Villas-Boas SG, Nielsen J, Smedsgaard J, Hansen MA, Roessner-Tunali U (2007) Metabolome analysis: an introduction. Wiley, New York

    Book  Google Scholar 

  • Wall CB, Ritson-Williams R, Popp BN, Gates RD (2019) Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol Oceanogr 64(5):2011–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall CB, Kaluhiokalani M, Popp BN, Donahue MJ, Gates RD (2020) Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME J 14:1–14

    Article  Google Scholar 

  • Wang J, Douglas A (1999) Essential amino acid synthesis and nitrogen recycling in an alga–invertebrate symbiosis. Mar Biol 135:219–222

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Wham DC, Ning G, LaJeunesse TC (2017) Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56:396–409

    Article  CAS  Google Scholar 

  • Wolinska J, King KC (2009) Environment can alter selection in host–parasite interactions. Trends Parasitol 25:236–244

    Article  PubMed  Google Scholar 

  • Xia J, Wishart DS (2011) Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinformatics 34:14.10.11–14.10.48

    Article  Google Scholar 

  • Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acid Res 43:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All corals were collected under State of Hawai‘i Division of Aquatic Resources Special Activity Permit SAP-2016-58. The authors acknowledge Siria Natera, Nirupama Samanmalie Jayasinghe and Himasha Mendis for their contributions to the GC–MS analysis performed at Metabolomics Australia (School of BioSciences, The University of Melbourne, Australia), a NCRIS initiative under Bioplatforms Australia Pty Ltd. This work was supported by the Royal Society Te Apārangi Marsden Fund (Grant No. 1202 awarded to S.K.D., A.R.G. and V.M.W.). We dedicate this manuscript to our dear friend and mentor, the eternally inspirational Dr. Ruth Gates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Matthews.

Ethics declarations

Conflict interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, J.L., Cunning, R., Ritson-Williams, R. et al. Metabolite pools of the reef building coral Montipora capitata are unaffected by Symbiodiniaceae community composition. Coral Reefs 39, 1727–1737 (2020). https://doi.org/10.1007/s00338-020-01999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01999-3

Keywords

Navigation