Skip to main content

Advertisement

Log in

Physiological diversity among sympatric, conspecific endosymbionts of coral (Cladocopium C1acro) from the Great Barrier Reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Most of the scleractinian corals living in the photic zone form an obligate symbiosis with dinoflagellates in the family Symbiodiniaceae that promotes reef accretion and niche diversification. However, sea surface temperature surpassing the normal summer average disrupts the symbioses, resulting in coral bleaching and mortality. Under climate warming, temperature anomalies and associated coral bleaching events will increase in frequency and severity. Therefore, it is imperative to better understand the variability in key phenotypic traits of the coral-Symbiodiniaceae association under such high temperature stress. Here, we describe the extent of genetically fixed differences in the in vitro acclimatory response of four conspecific strains of the common coral endosymbiont, Cladocopium C1acro. (formerly Symbiodinium type C1); these strains were isolated from Acropora corals from inshore sites on the Great Barrier Reef. We characterised algal growth and thylakoid membrane stability under different thermal scenarios and demonstrate previously undocumented physiological diversity among strains of a single Symbiodiniaceae species. Our results have important implications in terms of the perceived accuracy by which environmental stress tolerance of the coral holobiont can be predicted, potentially explaining patchiness in a coral community during bleaching based on the dominant Symbiodiniaceae genotype harboured by the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proceedings of the Royal Society B-Biological Sciences 275:2273–2282

    Article  CAS  PubMed Central  Google Scholar 

  • Amar KO, Douek J, Rabinowitz C, Rinkevich B (2008) Employing of the amplified fragment length polymorphism (AFLP) methodology as an efficient population genetic tool for symbiotic cnidarians. Mar Biotechnol 10:350–357

    Article  CAS  Google Scholar 

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, Lajeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Molecular Ecology 23:4418–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie B, Monje V, Silvestre V, Sison M, Belda-Baillie C (1998) Allozyme electrophoresis as a tool for distinguishing different zooxanthellae symbiotic with giant clams. Proceedings of the Royal Society of London Series B: Biological Sciences 265:1949–1956

    Article  CAS  PubMed Central  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741–741

    Article  CAS  PubMed  Google Scholar 

  • Banaszak AT, Trench RK (1995) Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses.1. Response of the algal symbionts in culture and in hospite. Journal of Experimental Marine Biology and Ecology 194:213–232

    Article  Google Scholar 

  • Beltran VH, Dunlap WC, Long PF (2012) Comparison of the photosynthetic bleaching response of four coral species common to the central GBR. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012 9A Coral bleaching and climate change:6pp

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proceedings of the Royal Society B-Biological Sciences 273:2305–2312

    Article  PubMed Central  Google Scholar 

  • Boylan P, Kleypas J (2008) New insights into the exposure and sensitivity of coral reefs to ocean warming. Proc 11th Int Coral Reef Symp 2:854–858

  • Buddemeier R, Kinzie R (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Chakravarti LJ, Beltran VH, van Oppen MJH (2017) Rapid thermal adaptation in photosymbionts of reef-building corals. Global Change Biology 23:4675–4688

    Article  PubMed  Google Scholar 

  • Coffroth M, Lasker H, Diamond M, Bruenn J, Bermingham E (1992) DNA fingerprints of a gorgonian coral: A method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • Cunning R, Gates RD, Edmunds PJ (2017) Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John US Virgin Islands. PeerJ 5:e3472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Almeyda E, Thome PE, El Hafidi M, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30:217–225

    Article  Google Scholar 

  • Diaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, Carlo TA, LaJeunesse TC, Medina M (2017) Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proceedings of the Royal Society B: Biological Sciences 284:20171767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doblin MA, Blackburn SI, Hallegraeff GM (2000) Intraspecific variation in the selenium requirement of different geographic strains of the toxic dinoflagellate Gymnodinium catenatum. J Plankton Res 22:421–432

    Article  CAS  Google Scholar 

  • Donner SD (2011) An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecological Applications 21:1718–1730

    Article  PubMed  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter WJ (1984) Light and bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Fuchinoue Y, Katayama T, Obata M, Murata A, Kinzie R, Taguchi S (2012) Growth, biochemical properties, and chlorophyll fluorescence of symbiotic and free-living dinoflagellates in response to ammonium enrichment. Journal of Experimental Marine Biology and Ecology 438:1–6

    Article  CAS  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: Facts, hypotheses and implications. Global Change Biology 2:495–509

    Article  Google Scholar 

  • Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in panama and Ecuador during the 1997–1998 El Nino-Southern oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bulletin of Marine Science 69:79–109

    Google Scholar 

  • Goreau TJ, Hayes RL (1994) Coral bleaching and ocean" hot spots". Ambio-Journal of Human Environment Research and Management 23:176–180

    Google Scholar 

  • Goulet T, Coffroth M (2003) Genetic composition of zooxanthellae between and within colonies of the octocoral Plexaura kuna, based on small subunit rDNA and multilocus DNA fingerprinting. Marine Biology 142:233–239

    Article  CAS  Google Scholar 

  • Grégoire V, Schmacka F, Coffroth MA, Karsten U (2017) Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). Journal of Applied Phycology 29:1893–1905

    Article  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods: culture and growth measurements. Cambridge University Press, Cambridge, pp 289–311

    Google Scholar 

  • Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, Kemp DW, LaJeunesse TC, Warner ME (2019) Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep-Uk 9:1–15

    CAS  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2:116–120

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Marine Ecology Progress Series 113:163–175

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. response of chlorophyll-protein complexes to different photon-flux densities. Marine Biology 130(1):23–33

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proceedings of the National Academy of Sciences U S A 89:10302–10305

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proceedings of the Royal Society of London Series B-Biological Sciences 271:1757–1763

    Article  CAS  Google Scholar 

  • Inoue N, Taira Y, Emi T, Yamane Y, Kashino Y, Koike H, Satoh K (2001) Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol 42:1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Lee SY, Kang NS, Yoo YD, Lim AS, Lee MJ, Kim HS, Yih W, Yamashita H, LaJeunesse TC (2014) Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium clade E. Journal of Eukaryotic Microbiology 61:75–94

    Article  CAS  PubMed  Google Scholar 

  • Karim W, Nakaema S, Hidaka M (2015) Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. Journal of Marine Science and Engineering 3:368–381

    Article  Google Scholar 

  • Klueter A, Trapani J, Archer FI, McIlroy SE, Coffroth MA (2017) Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12:e0187707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2014) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6(12):e29013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’event. Proceedings of the Royal Society B: Biological Sciences 276:4139–4148

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(2570–2580):e2576

    Google Scholar 

  • Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD, Van Oppen MJ (2016) Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Molecular biology and evolution 33:2201–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I, Aranda M, Bourne DG, Forêt S (2018) Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 1:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Pomati F, Neilan BA, Suzuki T, Manarolla G, Rossetti C (2003) Enhancement of intracellular saxitoxin accumulation by lidocaine hydrochloride in the cyanobacterium Cylindrospermopsis raciborskii T3 (Nostocales). J Phycol 39:535–542

    Article  CAS  Google Scholar 

  • Quigley KM, Baker A, Coffroth M, Willis BL, van Oppen MJ (2018) Bleaching resistance and the role of algal endosymbiontsCoral bleaching. Springer, pp111-151

  • Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-Sequencing Method for Quantifying Background Abundances of Symbiodinium Types: Exploring the Rare Symbiodinium Biosphere in Reef-Building Corals. Plos One 9

  • Raina JB, Clode PL, Cheong S, Bougoure J, Kilburn MR, Reeder A, Foret S, Stat M, Beltran V, Thomas-Hall P, Tapiolas D, Motti CM, Gong B, Pernice M, Marjo CE, Seymour JR, Willis BL, Bourne DG (2017) Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. Elife 6

  • Rodriguez-Roman A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Marine Biology 146:1063–1073

    Article  CAS  Google Scholar 

  • Rowan R (2004) Coral bleaching - Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Powers DA (1991a) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Marine Ecology Progress Series 71:65–73

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991b) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci U S A 89:3639–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences 74:5463–5467

    Article  CAS  Google Scholar 

  • Sato N, Sonoike K, Kawaguchi A, Tsuzuki M (1996) Contribution of lowered unsaturation levels of chloroplast lipids to high temperature tolerance of photosynthesis in Chlamydomonas reinhardtii. Journal of Photochemistry and Photobiology B: Biology 36:333–337

    Article  CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980a) Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum. Proceedings of the Royal Society of London Series B: Biological Sciences 207:405–427

    CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980b) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proceedings of the Royal Society of London Series B: Biological Sciences 207:429–444

    Google Scholar 

  • Schoenberg DA, Trench RK (1980c) Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and inlfectivity of Symbiodinium microadriaticum. Proceedings of the Royal Society of London Series B: Biological Sciences 207:445–460

    Google Scholar 

  • Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochem Biophys Acta 502:138–151

    CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Caldwell M (ed) Ecophysiology of photosynthesis (Ecological Studies, vol 100) Schilze, E. Springer, Berlin Heidelberg New York, pp 49–70

    Google Scholar 

  • Simpson C, Kiessling W, Mewis H, Baron-Szabo RC, Müller J (2011) Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution International Journal of Organic Evolution 65:3274–3284

    Article  PubMed  Google Scholar 

  • Spalding M, Brown B (2015) Warm-water coral reefs and climate change. Science 350:769–771

    Article  CAS  PubMed  Google Scholar 

  • Stanley GD, Fautin DG (2001) Paleontology and evolution - The origins of modern corals. Science 291:1913–1914

    Article  CAS  PubMed  Google Scholar 

  • Stat M, Pochon X, Franklin EC, Bruno JF, Casey KS, Selig ER, Gates RD (2013) The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecology and Evolution 3:1317–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Sully S, Burkepile D, Donovan M, Hodgson G, Van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nat Commun 10:1–5

    Article  CAS  Google Scholar 

  • Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR (2013) Thermal Acclimation of the Symbiotic Alga Symbiodinium spp. Alleviates Photobleaching under Heat Stress. Plant Physiol 161:477–485

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL (1969) Identity of zooxanthellae isolated from some Pacific Tridacnidae. J Phycol 5:336–340

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. Symbiosis in the Sea, ed. W. B Vernberg. Columbia, SC: Univ. South Carolina Press: 245–262

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences of the United States of America 101:13531–13535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornhill D, Howells E, Wham D, Steury T, Santos S (2017) Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Molecular Ecology 26:2640–2659

    Article  CAS  PubMed  Google Scholar 

  • Trench R (1993) Microalgal-invertebrate symbiosis, a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Trench RK (1997) Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses. Proc 8th Int Coral Reef Symp 2:1275–1286

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Marine Ecology-Progress Series 314:135–148

    Article  Google Scholar 

  • van der Wurff AWG, Chan YL, van Straaien NM, Schouten J (2000) TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Research 28:e105

    Article  PubMed Central  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proceedings of the Royal Society of London Series B-Biological Sciences 268:1759–1767

    Article  Google Scholar 

  • Veron JEN (1995) Corals in space and time: The biogeography and evolution of the Scleractinia. Ithaca, NY: Cornell University Press:321pp

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: A novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Weston AJ, Dunlap WC, Beltran VH, Starcevic A, Hranueli D, Ward M, Long PF (2015) Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Molecular & Cellular Proteomics 14:585–595

    Article  CAS  Google Scholar 

  • Wilkerson FP, Muller P, Muscatine L (1983) Temporal patterns of cell division in natural populations of endosymbiotic algae. Limnol Oceanogr 28:1009–1014

    Article  Google Scholar 

  • Yuyama I, Higuchi T (2014) Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS ONE 9:e98999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W (1982) Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950. Proceedings of the National Academy of Sciences 79:7699–7703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants to the Symbiont Culture Facility (SCF) at the Australian Institute of Marine Science (AIMS). We thank AIMS personnel for the assistance during collection of specimens and in general for providing access/training using diverse infrastructure/equipment during this research. We are also very grateful to the LaJeunesse Lab at Pennsylvania State University for sharing important information related to this communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. H. Beltrán.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Simon Davy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, V.H., Puill-Stephan, E., Howells, E. et al. Physiological diversity among sympatric, conspecific endosymbionts of coral (Cladocopium C1acro) from the Great Barrier Reef. Coral Reefs 40, 985–997 (2021). https://doi.org/10.1007/s00338-021-02092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02092-z

Keywords

Navigation