Skip to main content
Log in

Shallow energy levels induced by γ rays in standard and oxygenated floating zone silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Shallow defect levels in floating zone (FZ) and diffusion oxygenated FZ (DOFZ) silicon, before and after irradiation with a 60Co γ-source up to 300 Mrad, have been studied by thermally stimulated currents (TSC) and deep level transient spectroscopy (DLTS) in the temperature range 4.2–110 K. Besides vacancy oxygen (VO) and interstitial-substitutional carbon (CiCs) emissions, several TSC peaks have been observed. A trap with an activation energy of 11 meV has been observed at 6 K only in irradiated DOFZ. Two hole traps at 80 meV and 95 meV have been observed both in irradiated FZ and DOFZ, while a trap at 100 meV, related to an interstitial-oxygen (IO2) complex, has been revealed only in irradiated DOFZ. A TSC peak close to 24 K has been resolved into two components, whose concentrations are independent of irradiation fluence: a trap at 55 meV and a level which remains charged after emission at 80 meV. Our measurements confirm the formation, only in DOFZ, of a radiation induced donor at 230 meV. It appears to be responsible for the improved radiation hardness of oxygenated Si together with the suppression of deep acceptors, since no shallower radiation-induced donors have been detected in DOFZ samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.F.W. Sadrozinski, IEEE Trans. Nucl. Sci. 48, 993 (2001)

    Article  Google Scholar 

  2. The LHC study group, The Large Hadron Collider, Conceptual Design (CERN/AC/95-05 (LHC), Geneva, 1995)

    Google Scholar 

  3. J. Varela, Nucl. Phys. B 37, 121 (1995)

    Article  Google Scholar 

  4. M. Bruzzi, IEEE Trans. Nucl. Sci. 48, 960 (2001)

    Article  ADS  Google Scholar 

  5. G. Lindström, Nucl. Instrum. Methods A 512, 30 (2003)

    Article  ADS  Google Scholar 

  6. The RD50 collaboration, RD50 Status Report 2002/2003-Radiation Hard Semiconductor Devices for Very High Luminosity Colliders (CERN-LHCC-2003-058 and LHCC-RD-002, Geneva, 2003)

    Google Scholar 

  7. E. Fretwurst, G. Lindström, J. Stahl, I. Pintilie, Z. Li, J. Kierstead, E. Verbitskaya, R. Roeder, Nucl. Instrum. Methods A 514, 1 (2003)

    Article  ADS  Google Scholar 

  8. I. Pintilie, M. Buda, E. Fretwurst, G. Lindström, J. Stahl, Nucl. Instrum. Methods A 556, 197 (2006)

    Article  ADS  Google Scholar 

  9. I. Pintilie, E. Fretwurst, G. Lindström, J. Stahl, Nucl. Instrum. Methods A 514, 18 (2003)

    Article  ADS  Google Scholar 

  10. I. Pintilie, E. Fretwurst, G. Lindström, J. Stahl, Appl. Phys. Lett. 82, 2169 (2003)

    Article  ADS  Google Scholar 

  11. E. Borchi, M. Bruzzi, S. Pirollo, S. Sciortino, J. Phys. D 31, L93 (1998)

    Article  ADS  Google Scholar 

  12. E. Borchi, M. Bruzzi, Z. Li, S. Pirollo, J. Phys. D 33, 299 (2000)

    Article  ADS  Google Scholar 

  13. M.G. Buhler, Solid State Electron. 15, 69 (1972)

    Article  ADS  Google Scholar 

  14. D.V. Lang, J. Appl. Phys. 45, 3023 (1974)

    Article  ADS  Google Scholar 

  15. B.W. Wessels, J. Appl. Phys. 47, 1131 (1976)

    Article  ADS  Google Scholar 

  16. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London, 1992)

    Google Scholar 

  17. D. Menichelli, M. Scaringella, M. Bruzzi, I. Pintilie, E. Fretwurst, Phys. Rev. B 70, 195209 (2004)

    Article  ADS  Google Scholar 

  18. J.L. Lindstroem, T. Hallberg, J. Hermansson, L.I. Murin, B.A. Komarov, V.P. Markevich, M. Kleverman, B.G. Svensson, Physica B 308310, 284 (2001)

    Article  Google Scholar 

  19. S.D. Ganichev, E. Ziemann, W. Pretti, Phys. Rev. B 61, 10361 (2000)

    Article  ADS  Google Scholar 

  20. G. Vincent, A. Chantre, D. Bois, J. Appl. Phys. 50, 5484 (1979)

    Article  ADS  Google Scholar 

  21. J. Frenkel, Phys. Rev. 54, 647 (1938)

    Article  ADS  Google Scholar 

  22. J.L. Hartke, J. Appl. Phys. 39, 4871 (1968)

    Article  ADS  Google Scholar 

  23. P.A. Martin, B.G. Streetman, K. Hess, J. Appl. Phys. 52, 7409 (1981)

    Article  ADS  Google Scholar 

  24. J.C. Muller, R. Stuck, R. Berger, P. Siffert, Solid State Electron. 17, 1293 (1974)

    Article  ADS  Google Scholar 

  25. J.W. Walker, C.T. Sah, Phys. Rev. B 7, 4587 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Menichelli.

Additional information

PACS

71.55.Cn; 29.40.Wk; 61.80.Hg; 61.82.Fk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menichelli, D., Scaringella, M., Miglio, S. et al. Shallow energy levels induced by γ rays in standard and oxygenated floating zone silicon. Appl. Phys. A 84, 449–453 (2006). https://doi.org/10.1007/s00339-006-3640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3640-y

Keywords

Navigation