Skip to main content
Log in

Specificity of defects induced in silicon by RF-plasma hydrogenation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon wafers have been submitted to hydrogen RF-plasma treatment in various experimental conditions. Hydrogen RF-plasma treatment induced two kinds of effects on Si wafers, depending on the treatment conditions: surface corrugation and formation of structural defects below the free surface. Atomic force microscopy (AFM) investigations showed that the surface roughness significantly increased with the treatment duration, leading to the formation of pyramidal humps on the surface. The structural defects resulting after the plasma treatments were investigated by conventional and high-resolution transmission electron microscopy (CTEM and HRTEM) techniques. The specificity of the induced extended defects due to hydrogen decoration was emphasized. Three types of extended defects were identified and characterized: planar defects in the {111} and {100} planes and nanometric voids. Point defects related to the hydrogenation process were investigated by electron paramagnetic resonance (EPR) in correlation with the electron microscopy results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bruel, Nucl. Instrum. Methods B 108, 313 (1996)

    Article  ADS  Google Scholar 

  2. M.F. Beaufort, H. Garem, J. Lepinoux, Philos. Mag. A 69, 881 (1994)

    Article  ADS  Google Scholar 

  3. G.F. Cerofolini, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, Mater. Sci. Eng. 27, 1 (2000)

    Article  Google Scholar 

  4. N.H. Nickel, G.B. Anderson, N.M. Johnson, J. Walker, Phys. Rev. B 62, 8012 (2000)

    Article  ADS  Google Scholar 

  5. H. Nordmark, R. Holmestad, J.C. Walmsley, A. Ulyashin, J. Appl. Phys. 105, 033506 (2009)

    Article  ADS  Google Scholar 

  6. P.F.P. Fichtner, J.R. Kaschny, M. Behar, R.A. Yankov, A. Mücklich, W. Skorupa, Nucl. Instrum. Methods B 148, 329 (1999)

    Article  ADS  Google Scholar 

  7. C. Qian, B. Terreault, S.C. Gujrathi, Nucl. Instrum. Methods B 711, 175–177 (2001)

    Google Scholar 

  8. S. Rangan, S. Ashok, G. Chen, D. Theodore, Nucl. Instrum. Methods B 206, 417 (2003)

    Article  ADS  Google Scholar 

  9. S. Muto, S. Takeda, Philos. Mag. Lett. 72, 99 (1995)

    Article  ADS  Google Scholar 

  10. N.M. Johnson, F.A. Ponce, R.A. Street, R.J. Nemanich, Phys. Rev. B 35, 4166 (1987)

    Article  ADS  Google Scholar 

  11. S.V. Nistor, M. Stefan, J. Phys., Condens. Matter 21, 145408 (2009)

    Article  ADS  Google Scholar 

  12. C. Ghica, L.C. Nistor, H. Bender, O. Richard, G. Van Tendeloo, A. Ulyashin, Philos. Mag. 86, 5137 (2006)

    Article  ADS  Google Scholar 

  13. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Butterworth & Co., London, 1967)

    Google Scholar 

  14. M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, E.E. Chaman, J. Vac. Sci. Technol. B 15, 1065 (1997)

    Article  Google Scholar 

  15. E.V. Lavrov, J. Weber, Physica B 151, 308–310 (2001)

    Google Scholar 

  16. T. Akatsu, K.K. Bourdelle, C. Richtarch, B. Faure, F. Letertre, Appl. Phys. Lett. 86, 181910 (2005)

    Article  ADS  Google Scholar 

  17. C. Ghica, L.C. Nistor, H. Bender, O. Richard, G. Van Tendeloo, A. Ulyashin, J. Phys. D: Appl. Phys. 40, 395 (2007)

    Article  ADS  Google Scholar 

  18. D. Hull, Introduction to Dislocations, 2nd edn. (Pergamon, Oxford, 1975)

    Google Scholar 

  19. D. Williams, C.B. Carter, Transmission Electron Microscopy, vol. 3 (Plenum, New York, 1996)

    Google Scholar 

  20. A.G. Ulyashin, R. Job, W.R. Fahrner, O. Richard, H. Bender, C. Claeys, E. Simoen, D. Grambole, J. Phys., Condens. Matter 14, 13037 (2002)

    Article  ADS  Google Scholar 

  21. F.J. Dyson, Phys. Rev. 98, 349 (1955)

    Article  MATH  ADS  Google Scholar 

  22. C.F. Young, E.H. Poindexter, G.J. Gerardi, W.L. Warren, D.J. Keeble, Phys. Rev. B 55, 16245 (1997)

    Article  ADS  Google Scholar 

  23. N.M. Johnson, F.A. Ponce, R.A. Street, R.J. Nemanich, Phys. Rev. B 35, 4166 (1987)

    Article  ADS  Google Scholar 

  24. R.P. Wang, Appl. Phys. Lett. 88, 142104 (2006)

    Article  ADS  Google Scholar 

  25. M. Jivanescu, A. Stesmans, M. Zacharias, J. Appl. Phys. 104, 103518 (2008)

    Article  ADS  Google Scholar 

  26. N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida, K. Murakami, Appl. Phys. A 93, 589 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ghica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghica, C., Nistor, L.C., Stefan, M. et al. Specificity of defects induced in silicon by RF-plasma hydrogenation. Appl. Phys. A 98, 777–785 (2010). https://doi.org/10.1007/s00339-009-5527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5527-1

Keywords

Navigation