Skip to main content
Log in

Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell–Wagner–Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Schwartz, Smart Materials (Taylor & Francis, London, 2008)

    Book  Google Scholar 

  2. M. Addington, D. Schodek, Smart Materials and Technologies in Architecture (Taylor & Francis, London, 2012)

    Google Scholar 

  3. J.-S. Leng, X. Lan, H.-B. Lu, Y.-J. Liu, Int. J. Mod. Phys. B 24(15n16), 2351–2356 (2010)

    Article  ADS  Google Scholar 

  4. A.A. Vives, A. Arnau, Piezoelectric Transducers and Applications (Springer, Berlin, 2008)

    Book  Google Scholar 

  5. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer, Berlin, 2008)

    Google Scholar 

  6. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, 1996)

    Google Scholar 

  7. G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Appl. Phys. A 70, 1 (2000)

    Article  ADS  Google Scholar 

  8. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1985)

    Google Scholar 

  9. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39(4), 683 (2014)

    Article  Google Scholar 

  10. M.P. Silva, C.M. Costa, V. Sencadas, A.J. Paleo, S. Lanceros-Méndez, J. Polym. Res. 18(6), 1451–1457 (2011)

    Article  Google Scholar 

  11. J. Gomes, J.S. Nunes, V. Sencadas, S. Lanceros-Mendez, Smart Mater. Struct. 19(6), 065010 (2010)

    Article  ADS  Google Scholar 

  12. T. Furukawa, IEEE Trans. Electr. Insul. 24(3), 375–394 (1989)

    Article  Google Scholar 

  13. G.M. Sessler, J. Acoust. Soc. Am. 70(6), 1596–1608 (1981)

    Article  ADS  Google Scholar 

  14. G.H. Sessler, G.M. Sessler, M.G. Broadhurst, R. Gerhard-Multhaupt, Electrets (Laplacian Press, Morgan Hill, 2000)

    Google Scholar 

  15. Z. Ounaies, A. Young Jennifer, S. Harrison Joycelyn, An Overview of the Piezoelectric Phenomenon in Amorphous Polymers. Field Responsive Polymers, vol. 726 (American Chemical Society, 1999), pp. 88–103

  16. R. Chûjô, in Frontiers of Polymer Research, ed. by P. Prasad, J. Nigam. Molecular Design of Amorphous Piezoelectric Polymers with the Aid of NMR (Springer, New York, 1991), pp. 371–376

  17. H. Von Berlepsch, W. Kunstler, A. Wedel, R. Danz, D. Geiss, IEEE Trans. Electr. Insul. 24(2), 357–362 (1989)

    Article  Google Scholar 

  18. I. Seo, Ferroelectrics 171(1), 45–55 (1995)

    Article  Google Scholar 

  19. P.A. Mirau, S.A. Heffner, Polymer 33(6), 1156–1161 (1992)

    Article  Google Scholar 

  20. T. Takahashi, H. Kato, S.P. Ma, T. Sasaki, K. Sakurai, Polymer 36(20), 3803–3808 (1995)

    Article  Google Scholar 

  21. H.K. Hall Jr, R.H. Chan, J. Oku, O.R. Hughes, J. Scheinbeim, B. Newman, Polym. Bull. 17(2), 135–136 (1987)

    Article  Google Scholar 

  22. C. Park, Z. Ounaies, K.E. Wise, J.S. Harrison, Polymer 45(16), 5417–5425 (2004)

    Article  Google Scholar 

  23. Y. Furuya, J. Su, I. Takeuchi, V.K. Varadan, J. Ulicny, Materials and Devices for Smart Systems II (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  24. D.W. van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 2012)

    Google Scholar 

  25. J. Simpson, Z. Ounaies, C. Fay, MRS Online Proceedings Library 1996;459

  26. B. Gonzalo, J.L. Vilas, T. Breczewski, M.A. Pérez-Jubindo, M.R. De La Fuente, M. Rodriguez, L.M. León, J. Polym. Sci. A. Polym. Chem. 47(3), 722–730 (2009)

    Article  ADS  Google Scholar 

  27. M.S. Sebastián, B. Gonzalo, T. Breczewski, J.L. Vilas, M.A. Pérez-Jubindo, M.R. De La Fuente, L.M. León, Ferroelectrics 389(1), 114–121 (2009)

    Article  Google Scholar 

  28. B. Gonzalo, T. Breczewski, J.L. Vilas, M.A. Perez-Jubindo, M.R. De La Fuente, J.R. Dios, L.M. León, Ferroelectrics 370(1), 3–10 (2008)

    Article  Google Scholar 

  29. B. Gonzalo, J.L. Vilas, M. San Sebastián, T. Breczewski, M.Á. Pérez-Jubindo, M.R. de la Fuente, M. Rodríguez, L.M. León, J. Appl. Polym. Sci. 125(1), 67–76 (2012)

    Article  Google Scholar 

  30. S. Sakthivel, B.C. Shekar, D. Mangalaraj, S.K. Narayandass, S. Venkatachalam, P.V. Prabhakaran, Eur. Polymer J. 33(10–12), 1747–1752 (1997)

    Article  Google Scholar 

  31. S. Muruganand, S.K. Narayandass, D. Mangalaraj, T.M. Vijayan, Polym. Int. 50(10), 1089–1094 (2001)

    Article  Google Scholar 

  32. F. Kremer, A. Schnhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  33. G.W. Scherer, Relaxation in Glass and Composites (Krieger Publishing Company, Malabar, 1991)

    Google Scholar 

  34. R.H. Boyd, Polymer 26(3), 323–347 (1985)

    Article  Google Scholar 

  35. S. Lanceros-Mendez, M.V. Moreira, J.F. Mano, V.H. Schmidt, G. Bohannan, Ferroelectrics 273(1), 15–20 (2002)

    Article  Google Scholar 

  36. S. Firmino Mendes, C.M. Costa, V. Sencadas, J. Serrado Nunes, P. Costa, R. Gregorio Jr., S. Lanceros-Méndez, Appl. Phys. A 96(4), 899–908 (2009)

    Article  ADS  Google Scholar 

  37. A.C. Lopes, C.M. Costa, RSi Serra, I.C. Neves, J.L.G. Ribelles, S. Lanceros-Méndez, Solid State Ion. 235, 42–50 (2013)

    Article  Google Scholar 

  38. R.K. Chan, K. Pathmanathan, G.P. Johari, J. Phys. Chem. 90(23), 6358–6362 (1986)

    Article  Google Scholar 

  39. H. Lu, X. Zhang, J. Macromol. Sci. B 45(5), 933–944 (2006)

    Article  Google Scholar 

  40. P. Lunkenheimer, T. Götzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Solid State Chem. 179(12), 3965–3973 (2006)

    Article  ADS  Google Scholar 

  41. A.K. Jonscher, Nature 267(5613), 673–679 (1977)

    Article  ADS  Google Scholar 

  42. H. Deligöz, T. Yalcinyuva, S. Özgümüs, S. Yildirim, J. Appl. Polym. Sci. 100(1), 810–818 (2006)

    Article  Google Scholar 

  43. A.M.A. Nada, M. Dawy, A.H. Salama, Mater. Chem. Phys. 84(2–3), 205–215 (2004)

    Article  Google Scholar 

  44. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72(3), 873–892 (2000)

    Article  ADS  Google Scholar 

  45. J.C. Dyre, J. Appl. Phys. 64(5), 2456–2468 (1988)

    Article  ADS  Google Scholar 

  46. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33(8), 2027–2037 (1998)

    Article  ADS  Google Scholar 

  47. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D Appl. Phys. 38(9), 1450 (2005)

    Article  ADS  Google Scholar 

  48. K.L. Ngai, S.W. Martin, Phys. Rev. B 40(15), 10550–10556 (1989)

    Article  ADS  Google Scholar 

  49. H. Lu, X. Zhang, H. Zhang, J. Appl. Phys. 100(5), 054104 (2006)

    Article  ADS  Google Scholar 

  50. P.K. Dixon, Phys. Rev. B 42(13), 8179–8186 (1990)

    Article  ADS  Google Scholar 

  51. T. Prakash, K.P. Prasad, R. Kavitha, S. Ramasamy, B.S. Murty, J. Appl. Phys. 102(10), 104104 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PESTC/FIS/UI607/2011 and grants SFRH/BD/62507/2009 (A.C.L.) SFRH/BD/68499/2010 (C.M.C.). The authors also thank funding from “Matepro–Optimizing Materials and Processes,” ref. NORTE-07-0124-FEDER-000037,” co-funded by the “Programa Operacional Regional do Norte” (ON.2–O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). RSS acknowledges the support of the Spanish Ministry of Economy and Competitiveness through the project MAT2012-38359-C03-01 (including the FEDER financial support). Authors also thank the Basque Country Government for financial support (ACTIMAT project, ETORTEK Program, IE13-380, and Ayudas para Grupos de Investigación del Sistema Universitario Vasco Program, IT718-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maceiras, A., Costa, C.M., Lopes, A.C. et al. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Appl. Phys. A 120, 731–743 (2015). https://doi.org/10.1007/s00339-015-9251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9251-8

Keywords

Navigation