Skip to main content
Log in

Effects of Gd addition on the thermal and microstructural behaviors of the as-cast Cu–9 %Al and Cu–9 %Al–10 %Mn alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of Gd addition on the thermal and microstructural behaviors of as-cast samples of the Cu–9 %Al and Cu–9 %Al–10 %Mn alloys were investigated using different experimental techniques. The results showed that the addition of Gd does not significantly interfere in the melting and solidification temperatures of the Cu–9 %Al alloy, but it decreases the stability of β′ martensitic phase during re-heating of sample, while the presence of Mn slows the β(A2) phase decomposition during cooling and widens its stability field. The Cu–9 %Al–10 %Mn–3 %Gd alloy has characteristics close to those observed for the Cu–9 %Al–10 %Mn alloy, but the presence of Mn increases the solubility of Gd and induces the formation of Gd-rich precipitates with average size of 200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.Y. Hung, C.W.H. Lam, S.S. Tan, Effect of parent phase ageing on CuZnAl shape memory alloys with Mn and Zr addition. Mater. Lett. 33, 2291–2296 (1998)

    Google Scholar 

  2. N. Zarubova, V. Novak, Phase stability of CuAlMn shape memory alloys. Mater. Sci. Eng. A 378, 216–221 (2004)

    Article  Google Scholar 

  3. M. Izadinia, K. Dehghani, Structure and properties of nanostructured Cu-13.2 Al-5.1 Ni shape memory alloy produced by melt spinning. Trans. Nonferrous Met. Soc. China 21, 2037–2043 (2011)

    Article  Google Scholar 

  4. H.H. Kuo, W.H. Wang, Y.F. Hsu, Microstructural Characterization of precipitates in Cu-10 wt%Al-0.8 wt%Be shape memory alloy. Mater. Sci. Eng. A 430, 292–300 (2006)

    Article  Google Scholar 

  5. M. Zhu, X. Ye, C. Li, G. Song, Q. Zhai, Preparation of single crystal CuAlNiBe SMA and its performance. J. Alloys Compd. 478, 404–410 (2009)

    Article  Google Scholar 

  6. R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, K. Ishida, Phase equilibria and Heusler phase stability in Cu-rich portion of the Cu–Al–Mn system. J. Alloys Compd. 266, 191–200 (1998)

    Article  Google Scholar 

  7. R.A.G. Silva, A. Paganotti, S. Gama, A.T. Adorno, T.M. Carvalho, C.M.A. Santos, Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions. Mater. Charact. 75, 194–199 (2013)

    Article  Google Scholar 

  8. T. Sutou, R. Omori, K. Kainuma, Ishida, Ductile Cu–Al–Mn based shape memory alloy: general properties and applications. Mater. Sci. Technol. 24(8), 896–901 (1008)

    Article  Google Scholar 

  9. C.A. Canbay, Z. Karagoz, Effects of annealing temperature on thermomechanical properties of Cu–Al–Ni shape memory alloys. Int J Thermophys 34(7), 1325–1335 (2013)

    Article  ADS  Google Scholar 

  10. S. Stanciu, L.G. Bujoreanu, Formation of β 1 stress-induced martensite in the presence of γ-phase, in a Cu–Al–Ni–Mn–Fe shape memory alloy. Mater. Sci. Eng. A 481–482, 494–499 (2008)

    Article  Google Scholar 

  11. S. Miyazaki, K. Otsuka, Development of shape memory alloys. Iron steel Inst. Jpn. Int. 29, 353–377 (1989)

    Article  Google Scholar 

  12. C.A. Canbay, S. Ozgen, Z.K. Genc, Thermal and microstructural investigation of Cu–Al–Mn–Mg shape memory alloys. Appl. Phys. A 117(2), 767–771 (2014)

    Article  Google Scholar 

  13. C.A. Canbay, Z.K. Genc, M. Sekerci, Thermal and structural characterization of Cu–Al–Mn-X (Ti, Ni) shape memory alloys. Appl. Phys. A 115(2), 371–377 (2014)

    Article  ADS  Google Scholar 

  14. L.B. McCusker et al., Rietveld refinement guidelines. J. Appl. Cryst. 32, 36–50 (1999)

    Article  Google Scholar 

  15. A.A. Coelho, J. Evans, I. Evans, A. Kern, S. Parsons, The TOPAS symbolic computation system. Powder Diffr. 26(S1), S22–S25 (2011)

    Article  ADS  Google Scholar 

  16. J.L. Murray, The aluminium–copper system. Int. Metall. Rev. 30, 211–233 (1985)

    Article  Google Scholar 

  17. A.T. Adorno, M.R. Guerreiro, A.V. Benedetti, Thermal behavior of CuAl alloys near the α-CuAl solubility limit. J. Therm. Anal. Calorim. 65, 221–229 (2001)

    Article  Google Scholar 

  18. E. Clementi, D.L. RaimondiI, Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  19. Y. Sutou et al., Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 57, 5748–5758 (2009)

    Article  Google Scholar 

  20. E. Obrado et al., Order-disorder transitions of Cu–Al–Mn shape memory alloys. Phys. Rev. B 58(21), 14245–14255 (1998)

    Article  ADS  Google Scholar 

  21. Lide (ed.), Chemical Rubber Company Handbook of Chemistry and Physics, 77th edn. (CRC Press, Boca Raton, 1996)

    Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP (2015/18996-0) and CNPq for the financial support, and LNNano for technical support during electron microscopy work (FEI Inspect F50 – High Resolution SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. G. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazolin, G.F., Canbay, C.A., Ozgen, S. et al. Effects of Gd addition on the thermal and microstructural behaviors of the as-cast Cu–9 %Al and Cu–9 %Al–10 %Mn alloys. Appl. Phys. A 122, 928 (2016). https://doi.org/10.1007/s00339-016-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0474-0

Keywords

Navigation