Skip to main content

Advertisement

Log in

Complex and liquid hydrides for energy storage

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Quai et al., ChemSusChem. doi:10.1002/cssc.201500231

  2. A. Züttel, A. Borgschulte, L. Schlapbach, Hydrogen as a Future Energy Carrier (Wiley-VCH, Weinheim, 2008), pp. 427. ISBN: 978-3-527-30817-0

  3. Y. Nakamori, K. Miwa, Phys. Rev. B 74, 045126(1)–045126(9) (2006)

    Article  ADS  Google Scholar 

  4. S. Takagi, S. Orimo, Scr. Mater. (Viewpoint Paper) 109, 1–5 (2015)

    Article  Google Scholar 

  5. A. Borgschulte et al., Phys. Chem. Chem. Phys. 10, 4045 (2008)

    Article  Google Scholar 

  6. T. Frankcombe, Chem. Rev. 112, 2164 (2012)

    Article  Google Scholar 

  7. A. Borgschulte, E. Callini, B. Probst, A. Jain, S. Kato, O. Friedrichs, A. Remhof, M. Bielmann, A. Ramirez-Cuesta, A. Züttel, J. Phys. Chem. C 115, 17220 (2011)

    Article  Google Scholar 

  8. L.H. Jepsen, M.B. Ley, Y.-S. Lee, Y.W. Cho, M. Dornheim, J.O. Jensen, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Mater. Today 17, 129–135 (2014)

    Article  Google Scholar 

  9. M.B. Ley, L.H. Jepsen, Y.-S. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Mater. Today 17, 122–128 (2014)

    Article  Google Scholar 

  10. D.B. Ravnsbæk, Y. Filinchuk, R. Černý, M.B. Ley, Dr Haase, H.J. Jakobsen, Jr Skibsted, T.R. Jensen, Inorg. Chem. 49, 3801–3809 (2010)

    Article  Google Scholar 

  11. C. Frommen, N. Aliouane, S. Deledda, J.E. Fonneløp, H. Grove, K. Lieutenant, I. Llamas-Jansa, S. Sartori, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 496, 710–716 (2010)

    Article  Google Scholar 

  12. T. Sato, K. Miwa, Y. Nakamori, K. Ohoyama, H.-W. Li, T. Noritake, M. Aoki, S. Towata, S. Orimo, Phys. Rev. B 77, 104114(1)–104114(8) (2008)

    ADS  Google Scholar 

  13. T. Jaron, W. Grochala, Dalton Trans. 39, 160–166 (2010)

    Article  Google Scholar 

  14. Y.-S. Lee, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 114, 12833–12837 (2010)

    Article  Google Scholar 

  15. D.B. Ravnsbæk, L.H. Sørensen, Y. Filinchuk, D. Reed, D. Book, H.J. Jakobsen, F. Besenbacher, J. Skibsted, T.R. Jensen, Eur. J. Inorg. Chem. 11, 1608–1612 (2010)

    Article  Google Scholar 

  16. J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Prog. Mater Sci. 58, 30–75 (2013)

    Article  Google Scholar 

  17. H. Hagemann, M. Longhini, J.W. Kaminski, A. Wesolowski, R. Cerny, N. Penin, M.H. Sørby, B.C. Hauback, G. Severa, C.M. Jensen, J. Phys. Chem. A 112, 7551–7555 (2008)

    Article  Google Scholar 

  18. D. Ravnsbæk, Y. Filinchuk, Y. Cerenius, H.J. Jakobsen, F. Besenbacher, J. Skibsted, T.R. Jensen, Angew. Chem. Int. Ed. 48, 6659 (2009)

    Article  Google Scholar 

  19. R. Ĉerný, D.B. Ravnsbæk, P. Schouwink, Y. Filinchuk, Y. Penin, J. Teyssier, L. Smrčok, T.R. Jensen, J. Phys. Chem. C 116, 1563 (2012)

    Article  Google Scholar 

  20. O. Friedrichs, A. Borgschulte, S. Kato, F. Buchter, R. Gremaud, A. Remhof, A. Züttel, Chem. A Eur. J. 15, 5531–5534 (2009)

    Article  Google Scholar 

  21. O. Friedrichs, J.W. Kim, A. Remhof, D. Wallacher, A. Hoser, Y.W. Cho, K.H. Oh, A. Zuttel, Phys. Chem. Chem. Phys. 12, 4600–4603 (2010)

    Article  Google Scholar 

  22. O. Friedrichs, A. Remhof, A. Borgschulte, F. Buchter, S. Orimo, A. Züttel, Phys. Chem. Chem. Phys. 12, 10919–10922 (2010)

    Article  Google Scholar 

  23. O. Friedrichs, A. Remhof, S.J. Hwang, A. Züttel, Chem. Mater. 22, 3265–3268 (2010)

    Article  Google Scholar 

  24. A. Remhof, Y. Yan, D. Rentsch, A. Borgschulte, C.M. Jensen, A. Zuttel, J. Mater. Chem. A 2, 7244 (2014)

    Article  Google Scholar 

  25. A. Remhof, A. Borgschulte, O. Friedrichs, P. Mauron, Y. Yan, A. Züttel, Scr. Mater. 66, 280–283 (2012)

    Article  Google Scholar 

  26. C. Pistidda, S. Garroni, F. Dolci, E.G. Bardají, A. Khandelwal, P. Nolis, M. Dornheim, R. Gosalawit, T. Jensen, Y. Cerenius, S. Suriñach, M.D. Baró, W. Lohstroh, M. Fichtner, J. Alloy. Compd. 508, 212–215 (2010)

    Article  Google Scholar 

  27. B. Richter, D.B. Ravnsbaek, N. Tumanov, Y. Filinchuk, T.R. Jensen, Dalton Trans. 44, 3988–3996 (2015)

    Article  Google Scholar 

  28. Y. Filinchuk, B. Richter, T.R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem. Int. Ed. 50, 11162–11166 (2011)

    Article  Google Scholar 

  29. N.A. Tumanov, D.A. Safin, B. Richter, Z. Lodziana, T.R. Jensen, Y. Garcia, Y. Filinchuk, Dalton Trans. 44, 6571–6580 (2015)

    Article  Google Scholar 

  30. M.B. Ley, M. Paskevicius, P. Schouwink, B. Richter, D.A. Sheppard, C.E. Buckley, T.R. Jensen, Dalton Trans. 43, 13333–13342 (2014)

    Article  Google Scholar 

  31. T.D. Humphries, M.B. Ley, C. Frommen, K.T. Munroe, T.R. Jensen, B.C. Hauback, J. Mater. Chem. A 3, 691–698 (2015)

    Article  Google Scholar 

  32. Y. Sadikin, K. Stare, P. Schouwink, M. Brix Ley, T.R. Jensen, A. Jensen, R. Černý, J. Solid State Chem. 225, 231–239 (2015)

    Article  ADS  Google Scholar 

  33. R. Černý, P. Schouwink, Y. Sadikin, K. Stare, L.U. Smrčok, B. Richter, T.R. Jensen, Inorg. Chem. 52, 9941–9947 (2013)

    Article  Google Scholar 

  34. P. Schouwink, M.B. Ley, T.R. Jensen, L. Smrcok, R. Cerny, Dalton Trans. 43, 7726–7733 (2014)

    Article  Google Scholar 

  35. L.H. Jepsen, M.B. Ley, Y. Filinchuk, F. Besenbacher, T.R. Jensen, ChemSusChem 8, 1452–1463 (2015)

    Article  Google Scholar 

  36. L.H. Jepsen, M.B. Ley, R. Černý, Y.-S. Lee, Y.W. Cho, D. Ravnsbæk, F. Besenbacher, J. Skibsted, T.R. Jensen, Inorg. Chem. 54, 7402–7414 (2015)

    Article  Google Scholar 

  37. D.B. Ravnsbæk, E.A. Nickels, R. Černý, C.H. Olesen, W.I.F. David, P.P. Edwards, Y. Filinchuk, T.R. Jensen, Inorg. Chem. 52, 10877 (2013)

    Article  Google Scholar 

  38. C. Frommen, M.H. Sørby, P. Ravindran, P. Vajeeston, H. Fjellvåg, B.C. Hauback, J. Phys. Chem. C 115, 23591–23602 (2011)

    Article  Google Scholar 

  39. J.E. Olsen, C. Frommen, T.R. Jensen, M.D. Riktor, M.H. Sørby, B.C. Hauback, RSC Adv. 4, 1570–1582 (2014)

    Article  Google Scholar 

  40. M.B. Ley, D.B. Ravnsbæk, Y. Filinchuk, Y.S. Lee, R. Janot, Y.W. Cho, J. Skibsted, T.R. Jensen, Chem. Mater. 24, 1654 (2012)

    Article  Google Scholar 

  41. M.B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, T.R. Jensen, J. Phys. Chem. C 116, 21267–21276 (2012)

    Article  Google Scholar 

  42. A.V. Skripov, A.V. Soloninin, M.B. Ley, T.R. Jensen, Y. Filinchuk, J. Phys. Chem. C 117, 14965–14972 (2013)

    Article  Google Scholar 

  43. D.B. Ravnsbæk, M.B. Ley, Y.-S. Lee, H. Hagemann, V. D’Anna, Y.W. Cho, Y. Filinchuk, T.R. Jensen, Int. J. Hydrogen Energy 37, 8428–8438 (2012)

    Article  Google Scholar 

  44. J.E. Olsen, C. Frommen, M.H. Sørby, B.C. Hauback, RSC Adv. 3, 10764–10774 (2013)

    Article  Google Scholar 

  45. I. Lindemann, R. Domènech Ferrer, L. Dunsch, Y. Filinchuk, R. Černý, H. Hagemann, V. D’Anna, L.M. Lawson Daku, L. Schultz, O. Gutfleisch, Chem Eur J 16, 8707–8712 (2010)

    Article  Google Scholar 

  46. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  47. L. Mosegaard, B. Moller, J.-E. Jorgensen, Y. Filinchuk, Y. Cerenius, J.C. Hanson, E. Dimasi, F. Besenbacher, T.R. Jensen, J. Phys. Chem. C 112, 1299–1303 (2008)

    Article  Google Scholar 

  48. L.M. Arnbjerg, D.B. Ravnsbæk, Y. Filinchuk, R.T. Vang, Y. Cerenius, F. Besenbacher, J.-E. Jørgensen, H.J. Jakobsen, T.R. Jensen, Chem. Mater. 21, 5772–5782 (2009)

    Article  Google Scholar 

  49. O. Zavorotynska, M. Corno, E. Pinatel, L.H. Rude, P. Ugliengo, T.R. Jensen, M. Baricco, Crystals 2, 144 (2012)

    Article  Google Scholar 

  50. L.H. Rude, O. Zavorotynska, L.M. Arnbjerg, D.B. Ravnsbæk, R.A. Malmkjær, H. Grove, B.C. Hauback, M. Baricco, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Int. J. Hydrogen Energy 36, 15664–15672 (2011)

    Article  Google Scholar 

  51. L.H. Rude, E. Groppo, L.M. Arnbjerg, D.B. Ravnsbæk, R.A. Malmkjær, Y. Filinchuk, M. Baricco, F. Besenbacher, T.R. Jensen, J. Alloy. Compd. 509, 8299–8305 (2011)

    Article  Google Scholar 

  52. N. Verdal, T.J. Udovic, J.J. Rush, H. Wu, A.V. Skripov, J. Phys. Chem. C 117(2013), 12010–12011 (2018)

    Google Scholar 

  53. J.E. Olsen, M.H. Sørby, B.C. Hauback, J. Alloys Compd. 509, L228–L231 (2011)

    Article  Google Scholar 

  54. D.B. Ravnsbæk, L.H. Rude, T.R. Jensen, J. Solid State Chem. 184, 1858–1866 (2011)

    Article  ADS  Google Scholar 

  55. I. Llamas-Jansa, N. Aliouane, S. Deledda, J.E. Fonneløp, C. Frommen, T. Humphries, K. Lieutenant, S. Sartori, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 530, 186–192 (2012)

    Article  Google Scholar 

  56. J.E. Olsen, M.H. Sørby, B.C. Hauback, J. Alloy. Compd. 509, L228–L231 (2011)

    Article  Google Scholar 

  57. H. Grove, L.H. Rude, T.R. Jensen, M. Corno, P. Ugliengo, M. Baricco, M.H. Sørby, B.C. Hauback, RSC Adv. 4, 4736–4742 (2014)

    Article  Google Scholar 

  58. L.H. Rude, Y. Filinchuk, M.H. Sørby, B.C. Hauback, F. Besenbacher, T.R. Jensen, J. Phys. Chem. C 115, 7768–7777 (2011)

    Article  Google Scholar 

  59. J.Y. Lee, Y.-S. Lee, J.-Y. Suh, J.-H. Shim, Y.W. Cho, Metal halide doped metal borohydrides for hydrogen storage: The case of Ca(BH4)2–CaX2 (X = F, Cl) mixture. J. Alloys Compd. 506, 721–727 (2010)

    Article  Google Scholar 

  60. S. Hino, J.E. Fonneløp, M. Corno, O. Zavorotynska, A. Damin, B. Richter, M. Baricco, T.R. Jensen, M.H. Sørby, B.C. Hauback, J. Phys. Chem. C 116, 12482–12488 (2012)

    Article  Google Scholar 

  61. D.A. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicius, C.E. Buckley, RSC Adv. 4(52), 26552–26562 (2014)

    Article  Google Scholar 

  62. H.W. Brinks, A. Fossdal, B.C. Hauback, J. Phys. Chem. C 112, 5658–5661 (2008)

    Article  Google Scholar 

  63. N. Eigen, U. Bösenberg, J. Bellosta von Colbe, T.R. Jensen, Y. Cerenius, M. Dornheim, T. Klassen, R. Bormann, J. Alloy. Compd. 477, 76–80 (2009)

    Article  Google Scholar 

  64. L.H. Rude, U. Filso, V. D’Anna, A. Spyratou, B. Richter, S. Hino, O. Zavorotynska, M. Baricco, M.H. Sorby, B.C. Hauback, H. Hagemann, F. Besenbacher, J. Skibsted, T.R. Jensen, Phys. Chem. Chem. Phys. 15, 18185–18194 (2013)

    Article  Google Scholar 

  65. R. Heyn, I. Saldan, M.H. Sørby, C. Frommen, B. Arnstad, A.M. Bougza, H. Fjellvåg, B.C. Hauback, Phys. Chem. Chem. Phys. 15, 11226–11230 (2013)

    Article  Google Scholar 

  66. C. Pistidda, F. Karimi, S. Garroni, A. Rzeszutek, C. Bonatto Minella, C. Milanese, T.T. Le, L.H. Rude, J. Skibsted, T.R. Jensen, C. Horstmann, C. Gundlach, M. Tolkiehn, P.K. Pranzas, A. Schreyer, T. Klassen, M. Dornheim, J. Phys. Chem. C 118, 28409–28417 (2014)

    Article  Google Scholar 

  67. I. Saldan, M. Schulze, C. Pistidda, R. Gosalawit-Utke, O. Zavorotynska, L.H. Rude, J. Skibsted, D. Haase, Y. Cerenius, T.R. Jensen, G. Spoto, M. Baricco, K. Taube, M. Dornheim, J. Phys. Chem. C 117, 17360–17366 (2013)

    Article  Google Scholar 

  68. D.B. Ravnsbæk, Y. Filinchuk, R. Černý, T.R. Jensen, Z. Kristallogr. 225, 557 (2010)

    Article  Google Scholar 

  69. L.H. Rude, T.K. Nielsen, D.B. Ravnsbæk, U. Bösenberg, M.B. Ley, B. Richter, L.M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Phys. Status Solidi A 208, 1754–1773 (2011)

    Article  ADS  Google Scholar 

  70. M. Paskevicius, M.B. Ley, D.A. Sheppard, T.R. Jensen, C.E. Buckley, Phys. Chem. Chem. Phys. 15, 19774–19789 (2013)

    Article  Google Scholar 

  71. J.Y. Lee, D. Ravnsbæk, Y.-S. Lee, Y. Kim, Y. Cerenius, J.-H. Shim, T.R. Jensen, N.H. Hur, Y.W. Cho, J. Phys. Chem. C 113, 15080–15086 (2009)

    Article  Google Scholar 

  72. E.G. Bardají, Z. Zhao-Karger, N. Boucharat, A. Nale, M.J. van Setten, W. Lohstroh, E. Röhm, M. Catti, M. Fichtner, J. Phys. Chem. C 115, 6095–6101 (2011)

    Article  Google Scholar 

  73. M. Ley, E. Roedern, P. Thygesen, T. Jensen, Energies 8, 2701 (2015)

    Article  Google Scholar 

  74. M.B. Ley, E. Roedern, T.R. Jensen, Phys. Chem. Chem. Phys. 16, 24194–24199 (2014)

    Article  Google Scholar 

  75. P.C. Aeberhard, K. Refson, P.P. Edwards, W.I.F. David, Phys. Rev. B 83, 174102 (2011)

    Article  ADS  Google Scholar 

  76. W.I.F. David, S.K. Callear, M.O. Jones, P.C. Aeberhard, S.D. Culligan, A.H. Pohl, S.R. Johnson, K.R. Ryan, J.E. Parker, P.P. Edwards, C.J. Nuttall, A. Amieiro-Fonseca, Phys. Chem. Chem. Phys. 14(2012), 11800–11801 (1807)

    Google Scholar 

  77. L.H. Rude, M. Corno, P. Ugliengo, M. Baricco, Y.S. Lee, Y.W. Cho, F. Besenbacher, J. Overgaard, T.R. Jensen, J. Phys. Chem. C 116, 20239 (2012)

    Article  Google Scholar 

  78. S. Aldridge, A.J. Blake, A.J. Downs, R.O. Gould, S. Parsons, C.R. Pulham, J. Chem. Soc. Dalton Trans. (1997) 1007–1012

  79. P.H. Bird, M.R. Churchill, Chem. Commun. (London) 8, 403 (1967)

    Article  Google Scholar 

  80. R.W. Broach, I.S. Chuang, T.J. Marks, J.M. Williams, Inorg. Chem. 22, 1081 (1983)

    Article  Google Scholar 

  81. M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Appl. Phys. Lett. 224103(1), 224103(3) (2007)

    ADS  Google Scholar 

  82. H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 131, 894–895 (2009)

    Article  Google Scholar 

  83. M. Matsuo, H. Takamura, H. Maekawa, H.-W. Li, S. Orimo, Appl. Phys. Lett. 94, 084103(1)–084103(3) (2009)

    Article  ADS  Google Scholar 

  84. A.V. Skripov, A.V. Soloninin, L.H. Rude, T.R. Jensen, Y. Filinchuk, J. Phys. Chem. C 116, 26177–26184 (2012)

    Article  Google Scholar 

  85. P. Schouwink, M.B. Ley, A. Tissot, H. Hagemann, T.R. Jensen, Ľ. Smrčok, R. Černý, Nat. Commun. 5, 5706 (2014)

    Article  ADS  Google Scholar 

  86. T.K. Nielsen, A. Karkamkar, M. Bowden, F. Besenbacher, T.R. Jensen, T. Autrey, Methods to stabilize and destabilize ammonium borohydride. Dalton Trans. 42, 680–687 (2013)

    Article  Google Scholar 

  87. Z. Xiong, C.K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M.O. Jones, S.R. Johnson, P.P. Edwards, Nat. Mater. 7, 138 (2008)

    Article  ADS  Google Scholar 

  88. K.J. Gross, K.R. Carrington, S. Barcelo, A. Karkamkar, J. Purewal, S. Ma, H. Zhou, P. Dantzer, K. Ott, T. Burrell, T. Semeslberger, Y. Pivak, B. Dam, D. Chandra, Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials, National Renewable Energy Laboratory (2012)

  89. D.P. Broom, Int. J. Hydrogen Energy 32, 4871–4888 (2007)

    Article  Google Scholar 

  90. J. Tomiska, in R.A. Rapp (Ed.), Physicochemical Measurements in Metal Research. Vol. IV, Part I, of R.F. Bunshah (Ed.), Techniques of Metal Reasearch. New York, Interscience Publ. (1970) p. 247

  91. L.N.N. Nforbi, A. Talekar, K.H. Lau, R. Chellapa, W.M. Chien, D. Chandra, H. Hagemann, Y. Filinchuk, J.C. Zhao, A. Levchenko, Int. J. Hydrogen Energy 39, 2175–2186 (2014)

    Article  Google Scholar 

  92. K. Bohmhammel, B. Christ, G. Wolf, Thermochim. Acta 271, 67–73 (1996)

    Article  Google Scholar 

  93. A. El Kharbachi, I. Nuta, F. Hodaj, M. Baricco, Thermochim. Acta 520, 75–79 (2011)

    Article  Google Scholar 

  94. J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659–665 (2006)

    Article  Google Scholar 

  95. E.H. Majzoub, V. Ozoliņš, Phys. Rev. B 77, 104115 (2008)

    Article  ADS  Google Scholar 

  96. H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  97. M.W. Chase, NIST-JANAF-Thermochemical Tables, 4th ed. (1998)

  98. J.M. Joubert, JOM 64, 1438–1447 (2012)

    Article  ADS  Google Scholar 

  99. M. Baricco, M. Palumbo, E. Pinatel, M. Corno, P. Ugliengo, Adv. Sci. Technol. 72, 213–218 (2010)

    Article  Google Scholar 

  100. A. El Kharbachi, E. Pinatel, I. Nuta, C. Chatillon, M. Baricco, Calphad 39, 80–90 (2012)

    Article  Google Scholar 

  101. E.R. Pinatel, E. Albanese, B. Civalleri, M. Baricco, J. Alloy Compd. (2015). doi:10.1016/j.jallcom.2015.01.199

  102. J.J. Vajo, C.C. Ahn, R.C. Bowman, B. Fultz, J. Phys. Chem. B 108, 13977–13983 (2004)

    Article  Google Scholar 

  103. A.-L. Chaudhary, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic destabilisation of MgH2 and NaMgH3 using group IV elements Si, Ge or Sn. J. Alloys Compd. 623, 109–116 (2015)

    Article  Google Scholar 

  104. J.J. Vajo, S.L. Skeith, F. Mertens, J. Phys. Chem. B 109, 3719–3722 (2005)

    Article  Google Scholar 

  105. A.T. Luedtke, T. Autrey, Inorg. Chem. 49, 3905–3910 (2010)

    Article  Google Scholar 

  106. D. Neiner, A. Karkamkar, M. Bowden, Y.J. Choi, A. Luedtke, J. Holladay, A. Fisher, N. Szymczak, T. Autrey, Energy Environ. Sci. 4, 4187 (2011)

    Article  Google Scholar 

  107. D. Wechsler, Y. Cui, D. Dean, B. Davis, P.G. Jessop, J. Am. Chem. Soc. 130, 17195–17203 (2008)

    Article  Google Scholar 

  108. T.P. Tiemersma, T. Kolkman, J.A.M. Kuipers, M. van Sint Annaland, Chem. Eng. J. 230(203), 223 (2012)

    Article  Google Scholar 

  109. P.G. Campbell, L.N. Zakharov, D.J. Grant, D.A. Dixon, S. Liu, J. Am. Chem. Soc. 132, 3289–3291 (2010)

    Article  Google Scholar 

  110. G. Chen, L.N. Zakharov, M.E. Bowden, A.J. Karkamkar, S.M. Whittemore, E.B. Garner, T.C. Mikulas, D.A. Dixon, T. Autrey, S. Liu, J. Am. Chem. Soc. 137, 134–137 (2015)

    Article  Google Scholar 

  111. W. Luo, L.N. Zakharov, S. Liu, J. Am. Chem. Soc. 133, 13006–13009 (2011)

    Article  Google Scholar 

  112. K. Brooks, M. Bowden, A. Karkamkar, S. Whittemore, T. Autrey, in preparation

  113. P. Nordlander, J.K. Norskov, F. Besenbacher, J. Phys. F Metal Phys. 16(9), 1161–1171 (1986)

    Article  ADS  Google Scholar 

  114. J.K. Norskov, F. Besenbacher, J Less Common Metals 130, 475–490 (1987)

    Article  Google Scholar 

  115. Puru Jena, Virginia Commonwealth University, Richmond, VA (to be published)

  116. W. Grochala, P.P. Edwards, Chem. Rev. 104, 1283 (2004)

    Article  Google Scholar 

  117. Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, S. Orimo, Phys Rev B 74, 045126(1)–045126(9) (2006)

  118. M.B. Smith, G.E. Bass, J. Chem. Eng. Data 8, 342 (1963)

    Article  Google Scholar 

  119. P. Claudy, B. Bonnetot, J.M. Letoffe, G. Turck, Thermochim. Acta 27(1–3), 213–221 (1978)

    Article  Google Scholar 

  120. S.C. Abrahams, J.J. Kalnajs, Chem. Phys. 22, 434–436 (1954)

    ADS  Google Scholar 

  121. T.N. Dymova, D.P. Aleksandrov, V.N. Konoplev, T.A. Silina, N.T. Kuznetsov, Russ. J. Coord. Chem. Koordinatsionnaia Khimiia 19, 529–534 (1993)

    Google Scholar 

  122. D.A. Sheppard et al., J. Mater. Chem. A 1, 12775 (2013)

    Article  Google Scholar 

  123. T.D. Humphries et al., Chem. Comm. (2015). doi:10.1039/c5cc03654b

    Google Scholar 

  124. M.P. Pitt et al., J. Am. Chem. Soc. 135, 6930 (2013)

    Article  Google Scholar 

  125. H.W. Langmi, G. Sean McGrady, X. Liu, C.M. Jensen, Modification of the H2 desorption properties of LiAlH4 through doping with Ti. J. Phys. Chem. C 114 (23), 10666–10669 (2010)

  126. P.E. De Jongh, M. Allendorf, J.J. Vajo, C. Zlotea, Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38(6), 488–494 (2013)

    Article  Google Scholar 

  127. M. Fichtner, Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7(6), 443–455 (2005)

    Article  Google Scholar 

  128. J.J. Vajo, Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52–61 (2011)

    Article  ADS  Google Scholar 

  129. T.K. Nielsen, F. Besenbacher, T.R. Jensen, Nanoconfined hydrides for energy storage. Nanoscale 3(5), 2086–2098 (2011)

    Article  ADS  Google Scholar 

  130. P.E. De Jongh, P. Adelhelm, Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3(12), 1332–1348 (2010)

    Article  Google Scholar 

  131. C.P. Baldé, B.P.C. Hereijgers, J.H. Bitter, K.P. De Jong, Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew. Chem. Int. Ed. 45(21), 3501–3503 (2006)

    Article  Google Scholar 

  132. A.F. Gross, J.J. Vajo, S.L. Van Atta, G.L. Olson, Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112(14), 5651–5657 (2008)

    Article  Google Scholar 

  133. P. Adelhelm, J. Gao, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. Van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. De Jong, P.E. De Jongh, Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites. Chem. Mater. 22(7), 2233–2238 (2010)

    Article  Google Scholar 

  134. P. Błoński, Z. Łodziana, First-principles study of LiBH4 nanoclusters interaction with models of porous carbon and silica scaffolds. Int. J. Hydrogen Energy 39(18), 9848–9853 (2014)

    Article  Google Scholar 

  135. R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. De Jong, P.E. De Jongh, The structural characterization and H2 sorption properties of carbon-supported Mgx1−xNix nanocrystallites. Nanotechnology 20(20), 204019 (2009)

  136. C. Zlotea, F. Cuevas, J. Andrieux, C. Matei Ghimbeu, E. Leroy, E. Sengmany, C. Vix-Guterl, R. Gadiou, T. Martens, M. Latroche, Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2(1), 12–20 (2013)

    Article  Google Scholar 

  137. Y. Yan, Y.S. Au, D. Rentsch, A. Remhof, P.E. De Jongh, A. Züttel, Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites. J. Mater. Chem. A 1(37), 11177–11183 (2013)

    Article  Google Scholar 

  138. Y.S. Au, Y. Yan, K.P. De Jong, A. Remhof, P.E. De Jongh, Pore confined synthesis of magnesium boron hydride nanoparticles. J. Phys. Chem. C 118(36), 20832–20839 (2014)

    Article  Google Scholar 

  139. T.K. Nielsen, U. Bösenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher, T.R. Jensen, A reversible nanoconfined chemical reaction. ACS Nano 4(7), 3903–3908 (2010)

    Article  Google Scholar 

  140. U. Bösenberg, D.B. Ravnsbæk, H. Hagemann, V. D’Anna, C.B. Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann, M. Dornheim, Pressure and temperature influence on the desorption pathway of the LiBH4–MgH2 composite system. J. Phys. Chem. C 114(35), 15212–15217 (2010)

    Article  Google Scholar 

  141. H.S. Lee, Y.S. Lee, J.Y. Suh, M. Kim, J.S. Yu, Y.W. Cho, Enhanced desorption and absorption properties of eutectic LiB 4–Ca(BH4)2 infiltrated into mesoporous carbon. J. Phys. Chem. C 115(40), 20027–20035 (2011)

    Article  Google Scholar 

  142. P. Javadian, D.A. Sheppard, C.E. Buckley, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4-Ca(BH4)2. Nano Energy 11, 96–103 (2015)

    Article  Google Scholar 

  143. P. Javadian, C. Zlotea, C.M. Ghimbeu, M. Latroche, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4–Mg2NiH4 reactive hydride composites. J. Phys. Chem. C 119(11), 5819–5826 (2015)

    Article  Google Scholar 

  144. R. Gosalawit-Utke, C. Milanese, P. Javadian, A. Girella, D. Laipple, J. Puszkiel, A.S. Cattaneo, C. Ferrara, J. Wittayakhun, J. Skibsted, T.R. Jensen, A. Marini, T. Klassen, M. Dornheim, 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage. J. Alloy. Compd. 599, 78–86 (2014)

    Article  Google Scholar 

  145. G. Xia, Q. Meng, Z. Guo, Q. Gu, H. Liu, Z. Liu, X. Yu, Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption. Acta Mater. 61(18), 6882–6893 (2013)

    Article  Google Scholar 

  146. M. Christian, K.F. Aguey-Zinsou, Destabilisation of complex hydrides through size effects. Nanoscale 2(12), 2587–2590 (2010)

    Article  ADS  Google Scholar 

  147. S. Sartori, K.D. Knudsen, Z. Zhao-Karger, E.G. Bardaji, J. Muller, M. Fichtner, B.C. Hauback, Nanoconfined magnesium borohydride for hydrogen storage applications investigated by SANS and SAXS. J. Phys. Chem. C 114(44), 18785–18789 (2010)

    Article  Google Scholar 

  148. S. Sartori, K.D. Knudsen, A. Roth, M. Fichtner, B.C. Hauback, Small-angle scattering investigations on nanoconfined sodium alanate for hydrogen storage applications. Nanosci. Nanotechnol. Lett. 4(2), 173–177 (2012)

    Article  Google Scholar 

  149. D.T. Shane, R.L. Corey, C. McIntosh, L.H. Rayhel, R.C. Bowman Jr, J.J. Vajo, A.F. Gross, M.S. Conradi, LiBH4 in carbon aerogel nanoscaffolds: an NMR study of atomic motions. J. Phys. Chem. C 114(9), 4008–4014 (2010)

    Article  Google Scholar 

  150. J. Gao, P. Adelhelm, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. Van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. De Jong, P.E. De Jongh, Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J. Phys. Chem. C 114(10), 4675–4682 (2010)

    Article  Google Scholar 

  151. X. Liu, E.H. Majzoub, V. Stavila, R.K. Bhakta, M.D. Allendorf, D.T. Shane, M.S. Conradi, N. Verdal, T.J. Udovic, S.J. Hwang, Probing the unusual anion mobility of LiBH4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering. J. Mater. Chem. A 1(34), 9935–9941 (2013)

    Article  Google Scholar 

  152. M.H.W. Verkuijlen, P. Ngene, D.W. De Kort, C. Barré, A. Nale, E.R.H. Van Eck, P.J.M. Van Bentum, P.E. De Jongh, A.P.M. Kentgens, Nanoconfined LiBH4 and enhanced mobility of Li+ and BH4 studied by solid-state NMR. J. Phys. Chem. C 116(42), 22169–22178 (2012)

    Article  Google Scholar 

  153. A. Remhof, P. Mauron, A. Züttel, J.P. Embs, Z. Łodziana, A.J. Ramirez-Cuesta, P. Ngene, P. De Jongh, Hydrogen dynamics in nanoconfined lithiumborohydride. J. Phys. Chem. C 117(8), 3789–3798 (2013)

    Article  Google Scholar 

  154. P. Ngene, R. Van Zwienen, P.E. De Jongh, Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition. Chem. Commun. 46(43), 8201–8203 (2010)

    Article  Google Scholar 

  155. P. Ngene, M.H.W. Verkuijlen, Q. Zheng, J. Kragten, P.J.M. Van Bentum, J.H. Bitter, P.E. De Jongh, The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4. Faraday Discuss. 151, 47–58 (2011)

    Article  ADS  Google Scholar 

  156. T.K. Nielsen, M. Polanski, D. Zasada, P. Javadian, F. Besenbacher, J. Bystrzycki, J. Skibsted, T.R. Jensen, Improved hydrogen storage kinetics of nanoconfined NaAlH4 catalyzed with TiCl3 nanoparticles. ACS Nano 5(5), 4056–4064 (2011)

    Article  Google Scholar 

  157. K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011)

    Article  ADS  Google Scholar 

  158. P. Plerdsranoy, N. Wiset, C. Milanese, D. Laipple, A. Marini, T. Klassen, M. Dornheim, R. Gosalawit-Utke, Improvement of thermal stability and reduction of LiBH4/polymer host interaction of nanoconfined LiBH4 for reversible hydrogen storage. Int. J. Hydrogen Energy 40(1), 392–402 (2015)

    Article  Google Scholar 

  159. R.D. Stephens, A.F. Gross, S.L. Van Atta, J.J. Vajo, F.E. Pinkerton, The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20 (20) (2009)

  160. T.K. Nielsen, P. Javadian, M. Polanski, F. Besenbacher, J. Bystrzycki, J. Skibsted, T.R. Jensen, Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. Nanoscale 6(1), 599–607 (2014)

    Article  ADS  Google Scholar 

  161. J. Gao, P. Ngene, M. Herrich, W. Xia, O. Gutfleisch, M. Muhler, K.P. de Jong, P.E. de Jongh, Interface effects in NaAlH4/carbon nanocomposites for hydrogen storage. Int. J. Hydrogen Energy 39(19), 10175–10183 (2014)

    Article  Google Scholar 

  162. P. Ngene, R. Van Den Berg, M.H.W. Verkuijlen, K.P. De Jong, P.E. De Jongh, Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ. Sci. 4(10), 4108–4115 (2011)

    Article  Google Scholar 

  163. S. Cahen, J.B. Eymery, R. Janot, J.M. Tarascon, Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J. Power Sources 189(2), 902–908 (2009)

    Article  Google Scholar 

  164. X. Liu, D. Peaslee, C.Z. Jost, T.F. Baumann, E.H. Majzoub, Systematic pore-size effects of nanoconfinement of LiBH4: Elimination of diborane release and tunable behavior for hydrogen storage applications. Chem. Mater. 23(5), 1331–1336 (2011)

    Article  Google Scholar 

  165. P.A. Berseth, A.G. Harter, R. Zidan, A. Blomqvist, C.M. Araújo, R.H. Scheicher, R. Ahuja, P. Jena, Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAIH4. Nano Lett. 9(4), 1501–1505 (2009)

    Article  ADS  Google Scholar 

  166. J. Gao, P. Ngene, I. Lindemann, O. Gutfleisch, K.P. De Jong, P.E. De Jongh, Enhanced reversibility of H 2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J. Mater. Chem. 22(26), 13209–13215 (2012)

    Article  Google Scholar 

  167. S. Chumphongphan, U. Filsø, M. Paskevicius, D.A. Sheppard, T.R. Jensen, C.E. Buckley, Nanoconfinement degradation in NaAlH4/CMK-1. Int. J. Hydrogen Energy 39(21), 11103–11109 (2014)

    Article  Google Scholar 

  168. D. Blanchard, A. Nale, D. Sveinbjornsson, T.M. Eggenhuisen, M.H.W. Verkuijlen, T. Vegge, A.P.M. Kentgens, P.E. de Jongh, Nanoconfined LiBH4 as a fast lithium ion conductor. Adv. Funct. Mater. 25(2), 184–192 (2015)

    Article  Google Scholar 

  169. R.W.P. Wagemans, J.H. Van Lenthe, P.E. De Jongh, A.J. Van Dillen, K.P. De Jong, Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127(47), 16675–16680 (2005)

    Article  Google Scholar 

  170. W. Lohstroh, A. Roth, H. Hahn, M. Fichtner, Thermodynamic effects in nanoscale NaAlH4. ChemPhysChem 11(4), 789–792 (2010)

    Article  Google Scholar 

  171. P. Adelhelm, K.P. De Jong, P.E. De Jongh, How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem. Commun. 41, 6261–6263 (2009)

    Article  Google Scholar 

  172. J.A. Teprovich, M.S. Wellons, R. Lascola, S.-J. Hwang, P.A. Ward, R.N. Compton, R. Zidan, Synthesis and characterization of lithium-doped fullerane (Lix–C60–Hy) for reversible hydrogen storage. Nano Lett. 12(2), 582–589 (2012)

    Article  ADS  Google Scholar 

  173. P. Mauron, M. Gaboardi, D. Pontiroli, A. Remhof, M. Ricco, A. Züttel, Hydrogen desorption kinetics in metal intercalated fullerides. J. Phys. Chem. C 119(4), 1714–1719 (2015)

    Article  Google Scholar 

  174. B. Bogdanovic, M. Schwickardi, J. Alloys Compd. 253–254, 1 (1997)

    Article  Google Scholar 

  175. B. Bogdanovic, S. Sandrock, Catalyzed complex metal hydrides, MRS BULLETIN/SEPTEMBER 2002, pp 712–716

  176. G. Sandrock, K. Gross, G. Thomas, J. Alloys Compd. 339, 299–308 (2002)

    Article  Google Scholar 

  177. W. Luo, K.J. Gross, J. Alloys Compd. 385, 224–231 (2004)

    Article  Google Scholar 

  178. A. Leon, O. Kircher, M. Fichtner, J. Rothe, D. Schild, J. Phys. Chem. B 110, 1192–1200 (2006)

    Article  Google Scholar 

  179. M.P. Pitt, P.E. Vullum, M.H. Sørby, H. Emerich, M. Paskevicius, C.E. Buckley, J. Walmsley, R. Holmestad, B.C. Hauback, Hydrogen absorption kinetics of the transition-metal-chloride enhanced NaAlH4 system. J. Phys. Chem. C 116(27), 14205–14217 (2012)

    Article  Google Scholar 

  180. Z.O. Kocabas-Atakli, E. Callini, S. Kato, and A.Züttel, to be submitted to J. Alloys Compd. (2015)

  181. Z.Ö.K. Atakli, E. Callini, S. Kato, A. Züttel, Catalyzed hydrogensorption mechanism in alkali alanates, Accepted PCCP (2015)

  182. T. Sun, H. Wang, Q. Zhang, D. Sun, X. Yao, M. Zhu, J. Mater. Chem. 21, 9179–9184 (2011)

    Article  Google Scholar 

  183. H. Hagemann, R. Cerny, Dalton Trans. 39, 6006–6012 (2010)

    Article  Google Scholar 

  184. Z. Lodziana, A. Züttel, P. Zielinski, J. Phys. Condens. Matter 20(46), 465210–465217 (2008)

    Article  ADS  Google Scholar 

  185. D. Blanchard, Q. Shi, C.B. Boothroyd, T. Vegge, J. Phys. Chem. C 113, 14059–14066 (2009)

    Article  Google Scholar 

  186. R.G. Egdell, J.C. Green, Inorg. Chim. Acta 361, 462–466 (2008)

    Article  Google Scholar 

  187. C.J. Dain, A.J. Downs, D.W.H. Rankin, Angew. Chem. Int. Ed. Engl. 21(7), 534–535 (1982)

    Article  Google Scholar 

  188. E. Callini, A. Borgschulte, C.L. Hugelshofer, A.J. Ramirez-Cuesta, A. Züttel, J. Phys. Chem. C 118, 77–84 (2014)

    Article  Google Scholar 

  189. A. Remhof et al., J. Phys: Conf. Ser. 340, 012111–012118 (2012)

    ADS  Google Scholar 

  190. D.B. Ravnsbæk, L.H Sørensen, Y. Filinchuk, F. Besenbacher, T.R. Jensen, Screening of metal borohydrides by mechanochemistry and diffraction, Angew. Chem. Int. Ed. 51, 3582–3586 (2012)

  191. H.-W. Li, Y. Yan, S. Orimo, A. Züttel, C.M. Jensen, Energies 4(1), 185–214 (2011)

    Article  Google Scholar 

  192. J.J. Reilly, R.H. Wiswall, Inorg. Chem. 6, 2220–2223 (1967)

    Article  Google Scholar 

  193. Y.W. Cho, J.-H. Shim, B.-J. Lee, CALPHAD 30, 65–69 (2006)

    Article  Google Scholar 

  194. X.-D. Kang, P. Wang, L.-P. Ma, H.-M. Cheng, Appl. Phys. A Mater. Sci. Process. 89, 963–966 (2007)

    Article  ADS  Google Scholar 

  195. O. Friedrichs, J.W. Kim, A. Remhof, F. Buchter, A. Borgschulte, D. Wallacher, Y.W. Cho, M. Fichtner, K.H. Oh, A. Zuttel, Phys. Chem. Chem. Phys. 11, 1515–1520 (2009)

    Article  Google Scholar 

  196. S.-A. Jin, J.-H. Shim, Y.W. Cho, K.-W. Yi, O. Zabara, M. Fichtner, Scripta Mater. 58, 963–965 (2008)

    Article  Google Scholar 

  197. M. Meggouh, D.M. Grant, G.S. Walker, J. Phys. Chem. C 115(44), 22054–22061 (2011)

    Article  Google Scholar 

  198. D.B. Ravnsbæk, T.R. Jensen, J. Phys. Chem. Solids 71, 1144–1149 (2010)

    Article  ADS  Google Scholar 

  199. Y. Kojima, Y. Kawai, M. Matsumoto, T. Haga, J. Alloys Comp. 462, 275–278 (2008)

    Article  Google Scholar 

  200. S.-S. Liu, L.-X. Sun, Y. Zhang, F. Xu, J. Zhang, H.-L. Chu, M.-Q. Fan, T. Zhang, X.-Y. Song, J.P. Grolier, Int. J. Hydrogen Energy 34, 8079–8085 (2009)

    Article  Google Scholar 

  201. D.B. Ravnsbæk, T.R. Jensen, J. Appl. Phys. 111, 112621 (2012)

    Article  ADS  Google Scholar 

  202. B.R.S. Hansen, D.B. Ravnsbæk, D. Reed, D. Book, C. Gundlach, J. Skibsted, T.R. Jensen, J. Phys. Chem. C 117, 7423–7432 (2013)

    Article  Google Scholar 

  203. S. Soru; A. Taras, C. Pistidda, C. Milanese, M. Bonatto, C. Masolo, P. Nolis, M.D. Baró, A. Marini, M. Tolkiehn, M. Dornheim, S. Enzo, G. Mulas, S. Garroni, S, J. Alloys Compd. 615(S1), S693–S697 (2014)

  204. G. Barkhordarian, T. Klassen, M. Dornheim, R. Bormann, J. Alloy. Compd. 440, L18–L21 (2007)

    Article  Google Scholar 

  205. U. Bösenberg, S. Doppiu, L. Mosegaard, A. Borgschulte, N. Eigen, G. Barkhordarian, T.R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim, R. Bormann, Acta Mater. 55, 3951–3958 (2007)

    Article  Google Scholar 

  206. J. Jepsen, C. Milanese, A. Girella, G.A. Lozano, C. Pistidda, J.M. Bellosta von Colbe, A. Marini, T. Klassen, M. Dornheim, Int J Hydrogen Energy 38, 8357–8366 (2013)

    Article  Google Scholar 

  207. R. Gosalawit-Utke, C. Milanese, T.K. Nielsen, F. Karimi, I. Saldan, K. Pranzas, T.R. Jensen, A. Marini, T. Klassen, M. Dornheim, Int. J. Hydrogen Energy 38, 1932–1942 (2013)

    Article  Google Scholar 

  208. M. Hirscher (ed), Strategies to Alter the Reaction Enthalpies of Hydrides in Handbook of Hydrogen Storage (Wiley, Co, Weinheim, 2010)

  209. U. Bösenberg, D.B. Ravnsbaek, H. Hagemann, V. D’Anna, C.B. Minella, C. Pistidda, W. Van Beek, T.R. Jensen, R. Bormann, M. Dornheim, J. Phys. Chem. C 114, 15212–15217 (2010)

    Article  Google Scholar 

  210. U. Bösenberg, U. Vainio, P.K. Pranzas, J.M. Bellosta von Colbe, G. Goerigk, E. Welter, M. Dornheim, A. Schreyer, R. Bormann, Nanotechnology 20, 204003 (2009)

    Article  ADS  Google Scholar 

  211. U. Bösenberg, J.W. Kim, D. Gosslar, N. Eigen, T.R. Jensen, J.M. Bellosta von Colbe, Y. Zhou, M. Dahms, D.H. Kim, R. Günther, Y.W. Cho, K.H. Oh, T. Klassen, M. Dornheim, Y.W. Cho, Acta Mater. 58, 3381–3389 (2010)

    Article  Google Scholar 

  212. P.E. Pinkerton, M.S. Meyer, J. Alloys Compd. 464, L1 (2008)

    Article  Google Scholar 

  213. J.-H. Lim, J.-H. Shim, Y.-S. Lee, Y.W. Cho, J. Lee, Scripta Mater. 59, 1251 (2008)

    Article  Google Scholar 

  214. J.-H. Lim, J.-H. Shim, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, J. Lee, Int. J. Hydrogen Energy 35, 6578 (2010)

    Article  Google Scholar 

  215. S.-A. Jin, Y.-S. Lee, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 112, 9520 (2008)

    Article  Google Scholar 

  216. P. Mauron, M. Bielmann, A. Remhof, A. Züttel, J.-H. Shim, Y.W. Cho, J. Phys. Chem. C 114, 16801 (2010)

    Article  Google Scholar 

  217. J.-H. Shim, Y.-S. Lee, J.-Y. Suh, W. Cho, S.S. Han, Y.W. Cho, J. Alloys Compd. 510, L9 (2012)

    Article  Google Scholar 

  218. W. Luo, J. Alloys Compd. 381, 284 (2004)

    Article  Google Scholar 

  219. P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature 420, 302–304 (2002)

    Article  ADS  Google Scholar 

  220. Z. Xiong, G. Wu, J. Hu, P. Chen, Adv. Mater. 16, 1522–1525 (2004)

    Article  Google Scholar 

  221. H.Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe, H. Fujii, J. Phys. Chem. B 108, 8763–8765 (2004)

    Article  Google Scholar 

  222. Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, S. Orimo, J. Alloy. Compd. 404–406, 396–398 (2005)

    Article  Google Scholar 

  223. J. Wang, J. Hu, Y. Liu, Z. Xiong, G. Wu, H. Pan, P. Chen, J. Mater. Chem. 19, 2141–2146 (2009)

    Article  Google Scholar 

  224. J. Wang, T. Liu, G. Wu, W. Li, Y. Liu, C.M. Araújo, R.H. Scheicher, A. Blomqvist, R. Ahuja, Z. Xiong, P. Yang, M. Gao, H. Pan, P. Chen, Angew. Chem. Int. Ed. 48, 5828–5832 (2009)

    Article  Google Scholar 

  225. J. Wang, G. Wu, Y.S. Chua, J. Guo, Z. Xiong, Y. Zhang, M. Gao, H. Pan, P. Chen, ChemSusChem 4, 1622–1628 (2011)

    Article  Google Scholar 

  226. J. Hu, Y. Liu, G. Wu, Z. Xiong, Y.S. Chua, P. Chen, Chem. Mater. 20, 4398–4402 (2008)

    Article  Google Scholar 

  227. B. Li, Y. Liu, C. Li, M. Gao, H. Pan, J. Mater. Chem. A 2, 3155–3162 (2014)

    Article  Google Scholar 

  228. H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu, P. Chen, J. Mater. Chem. A 2, 15816–15822 (2014)

    Article  Google Scholar 

  229. H.-S. Lee, Y.-S. Lee, J.-Y. Suh, M. Kim, J.-S. Yu, Y.W. Cho, J. Phys. Chem. C 115, 20027 (2011)

    Article  Google Scholar 

  230. K. Park, H.-S. Lee, A. Remhof, Y.-S. Lee, Y. Yan, M.-Y. Kim, S.J. Kim, A. Züttel, Y.W. Cho, Int. J. Hydrogen Energy 38, 9263 (2013)

    Article  Google Scholar 

  231. J.-H. Shim, J.-H. Lim, S. Rather, Y.-S. Lee, D. Reed, Y. Kim, D. Book, Y.W. Cho, J. Phys. Chem. Lett. 1, 59 (2010)

    Article  Google Scholar 

  232. K.-B. Kim, J.-H. Shim, Y.W. Cho, K.H. Oh, Chem. Commun. 47, 9831 (2011)

    Article  Google Scholar 

  233. J.W. Kim, K.-B. Kim, J.-H. Shim, Y.W. Cho, K.H. Oh, Microsc. Microanal. 20, 1798 (2014)

    Article  ADS  Google Scholar 

  234. J. Hu, Y. Liu, G. Wu, Z. Xiong, P. Chen, J. Phys. Chem. C 111, 18439 (2007)

    Article  Google Scholar 

  235. M. Taube, D. Rippin, W. Knecht, D. Hakimifard, B. Milisavljevic, N. Gruenefelder, A prototype truck powered by hydrogen from organic liquid hydrides. Int. J. Hydrogen Energy 9, 595–599 (1985)

    Article  Google Scholar 

  236. S. Hodoshima, H. Arai, S. Takaiwa, Y. Saito, Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle. Int. J. Hydrogen Energy 28, 1255–1262 (2003)

    Article  Google Scholar 

  237. M. Chandra, Q. Xu, A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 156, 190–194 (2006)

    Article  Google Scholar 

  238. Z. Huang, X. Chen, T. Yisgedu, J.-C. Zhao, S.G. Shore, High-capacity hydrogen release through hydrolysis of NaB3H8. Int. J. Hydrogen Energy 36, 7038–7042 (2011)

    Article  Google Scholar 

  239. D. Schubert, D. Neiner, M. Bowden, S. Whittemore, J. Holladay, Z. Huang, T. Autrey, Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids. J. Alloys Compd. 645 (Supplement 1), S196–S199 (2015). doi:10.1016/j.jallcom.2015.01.063

  240. A. Cooper, Design and development of new carbon-based sorbent Systems for an effective containment of hydrogen. Technical Report, DOE Award No. DE-FC36-04GO14006, Department of Energy, Washington, DC (2012), pp 2231–2233

  241. P.G. Campbell, L.N. Zakharov, D.J. Grant, D.A. Dixon, S.-Y. Liu, Hydrogen storage by Boron–Nitrogen heterocycles: a simple route for spent fuel regeneration. J. Am. Chem. Soc. 132(10), 3289–3291 (2010)

    Article  Google Scholar 

  242. S. Whittemore, M. Bowden, A. Karkamkar, K. Parab, D. Neiner, S.-Y. Liu, D. Dixon, T. Autrey, Exploring the use of carbon, nitrogen, and boron containing heterocycles in liquid hydrogen storage. in ACS Division of Fuel Chemistry Proceedings (2014)

  243. Z. Wang, J. Belli, C.M. Jensen, Homogenous dehydrogenation of liquid organic carriers catalyzed by an iridium PCP complex. Faraday Discuss. 151, 297–305 (2011)

    Article  ADS  Google Scholar 

  244. S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Chem. Rev. 107, 4111–4132 (2007)

    Article  Google Scholar 

  245. D.K. Slattery, M.D. Hampton, Complex hydrides for hydrogen storage. in Proceedings of the 2002 U.S. Hydrogen Program Review, NREL/CP-610-32405, pp 1–9 (2002)

  246. E. Ashby, W. Foster, Concerning the existence of “triple metal hydrides”. The reactions of lithium aluminum hydride with diborane. J. Am. Chem. Soc. 88(14), 3248–3255 (1966)

    Article  Google Scholar 

  247. A.J. Downs, L.A. Jones, Polyhedron 13, 2401 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Federal Office of Energy in Switzerland for the Project No. SI/500597 “Advanced Complex Hydrides (ACH)” and the IEA Task 32 participation are acknowledged. This work was financially supported by CCEM research through the HyTech project and the SCCER “Heat & Electricity Storage” programme. The work was supported by the Danish National Research Foundation, Center for Materials Crystallography (DNRF93), the Danish Council for Strategic Research (project HyFill-Fast) and the Danish Research Council for Nature and Universe (Danscatt). We are grateful to the Carlsberg Foundation and Energistyrelsen, EUDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Züttel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callini, E., Atakli, Z.Ö.K., Hauback, B.C. et al. Complex and liquid hydrides for energy storage. Appl. Phys. A 122, 353 (2016). https://doi.org/10.1007/s00339-016-9881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9881-5

Keywords

Navigation