Skip to main content
Log in

Interfacial mechanisms of novel laser-irradiated L10-based nanocomposite magnets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In melt-spun FePtB-based ribbons, the addition of Ag has been proven to decrease the temperature of phase transformation from the A1 fcc FePt phase to the hard magnetic tetragonal L10 phase. Alloys with 6 and 9 at.% Ag added to the initial FePtB have been synthesized by rapid solidification from the melt. The samples have been laser irradiated and submitted to nitriding procedure. This procedure has been proven beneficial for inducing complete transformation of A1 to L10 phase and a strong (001) texturing. Ag segregation combined to mechanisms of creation of vacancies and diffusion of N give rise to the formation of an intergranular disordered region and due to an improved interfacial coupling between FePt grains, enhanced coercivity and two-phase magnetic behavior is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Gutfleisch, J. Lyubina, K.H. Müller, L. Schultz, Adv. Eng. Mater. 7, 208–212 (2005)

    Article  Google Scholar 

  2. W. Zhang, A. Kazahari, K. Yubuta, A. Makino, Y. Wang, R. Umetsu, Y. Li, J. Alloys Compd. 586, 5294–5297 (2014)

    Google Scholar 

  3. W. Zhang, D. Ma, Y. Li, K. Yubuta, X. Liang, D. Peng, J. Alloys & Compd. 615, 5252–5255 (2014)

    Google Scholar 

  4. A. Grabias, M. Kopcewicz, D. Oleszak, J. Latuch, M. Kowalczyk, M. PękaŁa, J. Magn. Magn. Mater. 322, 3137–3141 (2010)

    Article  ADS  Google Scholar 

  5. J.V. Lyubina, Nanocrystalline FePt Alloys: Phase Transformations, Structure and Magnetism (Cuvillier Verlag, Gottingen, 2007)

    Google Scholar 

  6. N. Kaushik, P. Sharma, S. Nagar, K.V. Rao, H. Kimura, A. Makino, A. Inoue, Mater. Sci. Eng. B 171, 62–68 (2010)

    Article  Google Scholar 

  7. J.L. Tsai, J.C. Huang, H.W. Tai, W.C. Tsai, Y.C. Lin, J. Magn. Magn. Mater. 329, 6–13 (2013)

    Article  ADS  Google Scholar 

  8. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, K. Sun, Nature (London) 420, 395–398 (2002)

    Article  ADS  Google Scholar 

  9. W. Zhang, D.V. Louzguine, A. Inoue, Appl. Phys. Lett. 85, 4998–5000 (2004)

    Article  ADS  Google Scholar 

  10. W. Zhang, P. Sharma, K.S. Shin, D.V. Louzguine, A. Inoue, Scripta Mater. 54, 431–435 (2006)

    Article  Google Scholar 

  11. A.A. Kundig, N. Abe, M. Ohnuma, T. Ohkubo, H. Mamiya, K. Hono, Appl. Phys. Lett. 85, 789–791 (2004)

    Article  ADS  Google Scholar 

  12. A. Makino, T. Bitoh, J. Appl. Phys. 95, 7498–7500 (2004)

    Article  ADS  Google Scholar 

  13. Y.K. Takahashi, T.O. Seki, K. Hono, T. Shima, K. Takahashi, J. Appl. Phys. 96, 475–481 (2004)

    Article  ADS  Google Scholar 

  14. X.C. Sun, S.S. Kang, J.W. Harrell, D.E. Nikles, J. Appl. Phys. 93, 7337–7339 (2003)

    Article  ADS  Google Scholar 

  15. A.D. Crisan, R. Nicula, O. Crisan, E. Burkel, Mater. Sci. Eng., C 27, 1280–1282 (2007)

    Article  Google Scholar 

  16. O. Crisan, A.D. Crisan, N. Randrianantoandro, R. Nicula, E. Burkel, J. Alloys Compd. 440, L3–L7 (2007)

    Article  Google Scholar 

  17. A.D. Crisan, O. Crisan, N. Randrianantoandro, M. Valeanu, M. Morariu, E. Burkel, Mater. Sci. Eng. C 27, 1283–1285 (2007)

    Article  Google Scholar 

  18. N. Randrianantoandro, A.D. Crisan, O. Crisan, J. Marcin, J. Kovac, J. Hanko, J.M. Greneche, P. Svec, A. Chrobak, I. Skorvanek, J. Appl. Phys. 108, 093910 (2010)

    Article  ADS  Google Scholar 

  19. S. Wang, S.S. Kang, D.E. Nikles, J.W. Harrell, X.W. Wu, J. Magn. Magn. Mater. 266, 49–56 (2003)

    Article  ADS  Google Scholar 

  20. A.D. Crisan, O. Crisan, J. Phys. D Appl. Phys. 44, 365002 (2011)

    Article  ADS  Google Scholar 

  21. A.D. Crisan, F. Vasiliu, I. Mercioniu, O. Crisan, Philos. Mag. 94, 174–189 (2014)

    Article  ADS  Google Scholar 

  22. A.D. Crisan, O. Crisan, Mater. Sci. Technol. 28, 460–466 (2012)

    Article  Google Scholar 

  23. O. Crisan, A.D. Crisan, J. Alloys Compd. 509, 6522–6527 (2011)

    Article  Google Scholar 

  24. O. Crisan, A.D. Crisan, J. Optoelectron. Adv. Mater. 12, 184–192 (2010)

    Google Scholar 

  25. A.D. Crisan, J. Optoelectron. Adv. Mater. 12, 250–256 (2010)

    Google Scholar 

  26. A.D. Crisan, M. Angelakeris, K. Simeonidis, I. Tsiaoussis, O. Crisan, Solid State Sci. 12, 1907–1911 (2010)

    Article  ADS  Google Scholar 

  27. O. Crisan, A.D. Crisan, N. Randrianantoandro, J. Alloys Compd. 440, L3–L7 (2007)

    Article  Google Scholar 

  28. O. Crisan, J.M. Le Breton, G. Filoti, Sens. Actuators A 106, 246–250 (2003)

    Article  Google Scholar 

  29. O. Crisan, J.M. Le Breton, M. Nogues, J. Phys. Condens. Matter 14, 12599–12609 (2002)

    Article  ADS  Google Scholar 

  30. O. Crisan, Y. Labaye, L. Berger, J. Appl. Phys. 91, 8727–8729 (2002)

    Article  ADS  Google Scholar 

  31. J.A. Gonzalez, J.P. Andres, J.A. De Toro et al., J. Nanopart. Res. 11, 2105–2111 (2009)

    Article  Google Scholar 

  32. O. Crisan, K. von Haeften, A.M. Ellis, C. Binns, J. Nanopart. Res. 10, 193–199 (2008)

    Article  Google Scholar 

  33. M. Seqqat, M. Nogues et al., J. Magn. Magn. Mater. 157, 225–226 (1996)

    Article  ADS  Google Scholar 

  34. M. Rosenberg, V. Kuncser et al., J. Magn. Magn. Mater. 177, 135–136 (1998)

    Article  ADS  Google Scholar 

  35. V.R. Reddy, O. Crisan, A. Gupta et al., Thin Solid Films 520, 2184–2189 (2012)

    Article  ADS  Google Scholar 

  36. Y. Ishikawa, K. Kawaguchi, Y. Shimizu, T. Sasaki, N. Koshizaki, Chem. Phys. Lett. 428, 426–429 (2006)

    Article  ADS  Google Scholar 

  37. M. Rouenhoff, Synthesis of monodisperse FePt Nanoparticles by Pulsed Laser Ablation. PhD Dissertation, U-Duisburg-Essen (2013)

  38. H. Yamane, T. Narisawa, T. Hasegawa, S. Ishio, J. Appl. Phys. 108, 113923 (2010)

    Article  ADS  Google Scholar 

  39. T. Narisawa, T. Hasegawa, S. Ishio, H. Yamane, J. Appl. Phys. 109, 033918 (2011)

    Article  ADS  Google Scholar 

  40. J.S. Chen, C.J. Sun, G.M. Chow, Nanostructured high-anisotropy materials for high-density magnetic recording, in Functional Nanostructures: Processing, Characterization and Applications, ed. by S. Seal, Nanostructure Science and Technology series (ed. D.J. Longwood) (Springer Science + Business Media LLC, 2008). ISBN: 978-0-387-35463-7 

  41. M. Sofronie, F. Tolea, V. Kuncser, M. Valeanu, J. Appl. Phys. 107, 113905 (2010)

    Article  ADS  Google Scholar 

  42. F. Tolea, M. Tolea, M. Sofronie, M. Valeanu, Solid State Com. 213, 37–41 (2015)

    Article  ADS  Google Scholar 

  43. F. Tolea, M. Sofronie, A.D. Crisan, M. Enculescu, V. Kuncser, M. Valeanu, J. Alloys Compd. 650, 664–670 (2015)

    Article  Google Scholar 

  44. M. Sofronie, F. Tolea, V. Kuncser, M. Valeanu, G. Filoti, IEEE Trans. on Magn. 51, 2500404 (2015)

    Article  Google Scholar 

  45. R. Medwal, N. Sehdev, S. Annapoorni, J. Phys. D Appl. Phys. 45, 055001 (2012)

    Article  ADS  Google Scholar 

  46. H.Y. Wang, W.H. Mao, X.K. Ma, H.Y. Zhang, Y.B. Chen, Y.J. He, E.Y. Jiang, J. Appl. Phys. 95, 2564 (2004)

    Article  ADS  Google Scholar 

  47. O. Dmitrieva, M. Acet, G. Dumpich, J. Kastner, C. Antoniak, M. Farle, K. Fauth, J. Phys. D Appl. Phys. 30, 4741 (2006)

    Article  ADS  Google Scholar 

  48. W.B. Mi, E.Y. Jiang, H.L. Bai, Appl. Surf. Sci. 253, 1830 (2006)

    Article  ADS  Google Scholar 

  49. V. Phatak, A. Gupta, V.R. Reddy, S. Chakravarty, H. Schmidt, R. Ruffer, Acta Mater. 58, 979 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Romanian Ministry of Education and Research from projects PN-II-PT-PCCA-2013-4-1623 contract PCCA 70/2014 and PN-II-RU-TE-2014-4-1904 contract TE 175/2015 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Crisan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, O., Crisan, A.D. & Enculescu, M. Interfacial mechanisms of novel laser-irradiated L10-based nanocomposite magnets. Appl. Phys. A 122, 411 (2016). https://doi.org/10.1007/s00339-016-9947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9947-4

Keywords

Navigation