Skip to main content
Log in

Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser induced periodic surface structures (LIPSS) are formed on poly(trimethylene terephthalate) and its composites with single-walled carbon nanotubes (SWCNT) and with both SWCNT and expanded graphite (EG) upon irradiation with a Q-Switched Nd:YAG laser (266 nm, 8 ns). The morphology of the polymer films was characterized by atomic force microscopy. A cantilever with a colloidal probe was used to obtain information about surface adhesion. Surface energies were estimated by contact angle measurements using different liquids. Chemical modification in the materials upon irradiation was assessed by Raman spectroscopy. Results show a dependence of the number of pulses required for LIPSS formation as a consequence of the presence of the carbon nanoadditive and an increase of the hydrophilic character of surfaces after irradiation. Moreover, the polar component of the surface free energy changes significantly and surface adhesion increases by the addition of the additive to the polymer matrix. Additionally, the adhesion force decreases after laser nanostructuring as a consequence of a lower contact area in the nanostructured material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  2. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Compos. Part A: Appl. Sci. Manuf. 41, 1345 (2010)

    Article  Google Scholar 

  3. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638 (2011)

    Article  Google Scholar 

  4. S. Paszkiewicz, A. Szymczyk, X.M. Sui, H.D. Wagner, A. Linares, A. Cirera, A. Varea, T.A. Ezquerra, Z. Rosłaniec, J. Appl. Polym. Sci. 134, 44370 (2017)

    Article  Google Scholar 

  5. A. Ammar, A.M. Al-Enizi, M.A. AlMaadeed, A. Karim, Arabian J. Chem. 9, 274 (2016)

    Article  Google Scholar 

  6. S.H. Park, P.R. Bandaru, Polymer 51, 5071 (2010)

    Article  Google Scholar 

  7. A. Linares, J.C. Canalda, M.E. Cagiao, M.C. García-Gutiérrez, A. Nogales, I. Martín-Gullón, J. Vera, T.A. Ezquerra, Macromolecules 41, 7090 (2008)

    Article  ADS  Google Scholar 

  8. Z. Tao, H. Wang, X. Li, Z. Liu, Q. Guo, J. Appl. Polym. Sci. 134, 44843 (2017)

    Article  Google Scholar 

  9. H.-D. Huang, P.-G. Ren, J. Chen, W.-Q. Zhang, X. Ji, Z.-M. Li, J. Membr. Sci. 409–410, 156 (2012)

    Article  Google Scholar 

  10. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  11. J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997)

    Article  ADS  Google Scholar 

  12. M. Monthioux, Carbon 40, 1809 (2002)

    Article  Google Scholar 

  13. G. Guanghua, Ç. Tahir, A.G. William, III, Nanotechnology. 9, 184 (1998)

    Article  ADS  Google Scholar 

  14. S. Paszkiewicz, A. Szymczyk, X.M. Sui, H.D. Wagner, A. Linares, T.A. Ezquerra, Z. Rosłaniec, Compos. Sci. Technol. 118, 72 (2015)

    Article  Google Scholar 

  15. A. Celzard, J.F. Marêché, G. Furdin, Prog. Mater. Sci. 50, 93 (2005)

    Article  Google Scholar 

  16. W. Zheng, S.-C. Wong, Compos. Sci. Technol. 63, 225 (2003)

    Article  Google Scholar 

  17. M. Zhang, D.-J. Li, D.-F. Wu, C.-H. Yan, P. Lu, G.-M. Qiu, J. Appl. Polym. Sci. 108, 1482 (2008)

    Article  Google Scholar 

  18. R.K. Goyal, P.A. Jagadale, U.P. Mulik, J. Appl. Polym. Sci. 111, 2071 (2009)

    Article  Google Scholar 

  19. S. Paszkiewicz, A. Szymczyk, Z. Špitalský, M. Soccio, J. Mosnáček, T.A. Ezquerra, Z. Rosłaniec, J. Polym. Sci. Part B: Polym. Phys. 50, 1645 (2012)

    Article  ADS  Google Scholar 

  20. H. Schift, J. Vac. Sci. Technol. B Microelectron. Nanometer. Struct. Process. Meas. Phenom. 26, 458 (2008)

    Article  ADS  Google Scholar 

  21. D. Qin, Y. Xia, G.M. Whitesides, Nat. Protoc. 5, 491 (2010)

    Article  Google Scholar 

  22. J.P. Rolland, E.C. Hagberg, G.M. Denison, K.R. Carter, J.M. De Simone, Angew. Chem. Int. Ed. 43, 5796 (2004)

    Article  Google Scholar 

  23. M. Sanz, E. Rebollar, R.A. Ganeev, M. Castillejo, Appl. Surf. Sci. 278, 325 (2013)

    Article  ADS  Google Scholar 

  24. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Sel. Topics Quantum. Electron. 23, 1 (2017)

    Article  Google Scholar 

  25. P. Gregorčič, M. Sedlaček, B. Podgornik, J. Reif, Appl. Surf. Sci. 387, 698 (2016)

    Article  ADS  Google Scholar 

  26. A. Talbi, A. Petit, A. Melhem, A. Stolz, C. Boulmer-Leborgne, G. Gautier, T. Defforge, N. Semmar, Appl. Surf. Sci. 374, 31 (2016)

    Article  ADS  Google Scholar 

  27. E. Rebollar, M. Castillejo, T.A. Ezquerra, Eur. Polym. J. 73, 162 (2015)

    Article  Google Scholar 

  28. S. Pérez, E. Rebollar, M. Oujja, M. Martín, M. Castillejo, Appl. Phys. A 110, 683 (2013)

    Article  ADS  Google Scholar 

  29. P. Slepička, O. Neděla, N. Slepičková Kasálková, P. Sajdl, V. Švorčík, Int. J. Nanotechnol. 14, 399 (2017)

    Article  Google Scholar 

  30. E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Langmuir 27, 5596 (2011)

    Article  Google Scholar 

  31. E. Rebollar, J.R.V.d.. Aldana, J.A. Pérez-Hernández, T.A. Ezquerra, P. Moreno, M. Castillejo, Appl. Phys. Lett. 100, 041106 (2012)

    Article  ADS  Google Scholar 

  32. M. Forster, W. Kautek, N. Faure, E. Audouard, R. Stoian, Phys. Chem. Chem. Phys. 13, 4155 (2011)

    Article  Google Scholar 

  33. E. Rebollar, D.R. Rueda, I. Martín-Fabiani, Á. Rodríguez-Rodríguez, M.-C. García-Gutiérrez, G. Portale, M. Castillejo, T.A. Ezquerra, Langmuir 31, 3973 (2015)

    Article  Google Scholar 

  34. D.W. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin Heidelberg, 2011)

    Book  Google Scholar 

  35. S. Paszkiewicz, I. Pawelec, A. Szymczyk, Z. Rosłaniec, Polimery/Polymers 61, 172 (2016)

    Google Scholar 

  36. S. Kumar, L.L. Sun, S. Caceres, B. Li, W. Wood, A. Perugini, R.G. Maguire, W.H. Zhong, Nanotechnology. 21, 105702 (2010)

    Article  ADS  Google Scholar 

  37. J. Cui, A. Nogales, T.A. Ezquerra, E. Rebollar, Appl. Surf. Sci. 394, 125 (2017)

    Article  ADS  Google Scholar 

  38. F.J. Boerio, S.K. Bahl, G.E. McGraw, J. Polym. Sc.i Polym. Phys. Edit. 14, 1029 (1976)

    Article  ADS  Google Scholar 

  39. I.M. Ward, M.A. Wilding, Polymer 18, 327 (1977)

    Article  Google Scholar 

  40. A.G. Souza Filho, A. Jorio, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B. 65, 085417 (2002)

    Article  ADS  Google Scholar 

  41. M. Lucas, R.J. Young, Phys. Rev. B. 69, 085405 (2004)

    Article  ADS  Google Scholar 

  42. U.D. Venkateswaran, D.L. Masica, G.U. Sumanasekera, C.A. Furtado, U.J. Kim, P.C. Eklund, Phys. Rev. B. 68, 241406 (2003)

    Article  ADS  Google Scholar 

  43. D.A. Heller, P.W. Barone, J.P. Swanson, R.M. Mayrhofer, M.S. Strano, J Phys Chem B. 108, 6905 (2004)

    Article  Google Scholar 

  44. M.C. García-Gutiérrez, A. Nogales, D.R. Rueda, C. Domingo, J.V. García-Ramos, G. Broza, Z. Roslaniec, K. Schulte, R.J. Davies, T.A. Ezquerra, Polymer 47, 341 (2006)

    Article  Google Scholar 

  45. E. Rebollar, S. Pérez, M. Hernández, C. Domingo, M. Martín, T.A. Ezquerra, J.P. García-Ruiz, M. Castillejo, Phys. Chem. Chem. Phys. 16, 17551 (2014)

    Article  Google Scholar 

  46. D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969)

    Article  Google Scholar 

  47. B. Bharat, J. Yong Chae, J. Phys. Condens. Matter. 20, 225010 (2008)

    Article  ADS  Google Scholar 

  48. E. Wohlfart, J.P. Fernández-Blázquez, E. Knoche, A. Bello, E. Pérez, E. Arzt, A. del Campo, Macromolecules. 43, 9908 (2010)

    Article  ADS  Google Scholar 

  49. Z. Burton, B. Bhushan, Nano Lett. 5, 1607 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the MINECO (FIS2013-44174-P, MAT2014-59187-R, MAT2015-66443-C02-1-R, FIS2015-71933-REDT, CTQ2016-75880-P) and Junta de Castilla y León (Project SA046U16). RIR is grateful for the International Scholarship number 314197 provided by Consejo Nacional de Ciencia y Tecnología (CONACyT-México) and E.R. thanks MINECO for a Ramón y Cajal contract (RYC-2011-08069). The authors thank J. V. Garcı́a Ramos for the Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Rebollar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Beltrán, R.I., Paszkiewicz, S., Szymczyk, A. et al. Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Appl. Phys. A 123, 717 (2017). https://doi.org/10.1007/s00339-017-1299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1299-1

Navigation