Skip to main content
Log in

Flexible organic heterostructures obtained by MAPLE

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic heterostructures based on zinc phthalocyanine (ZnPc) and perylene tetracarboxylic dianhydride (PTCDA) were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique on conductive flexible substrate (ITO/PET) in three configurations: ZnPc/PTCDA (stacked layers), ZnPc:PTCDA (blend) and ZnPc/ZnPc:PTCDA/PTCDA. The effect of the configuration on the optical and electrical properties of the obtained heterostructures was investigated. For all heterostructures was observed an improved optical absorption in visible domain. The IV characteristics recorded under illumination, revealed higher short circuit current (ISC) values for the ZnPc:PTCDA and ZnPc/ZnPc:PTCDA/PTCDA structures in comparison with that of the ZnPc/PTCDA structure. The results proved that by MAPLE can be obtained flexible organic heterostructures (in different configurations) with properties adequate for applications in flexible electronics and solar cell fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Karzazi, J. Mater. Environ. Sci. 5, 1 (2014)

    Google Scholar 

  2. A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, M. Girtan, N. Preda, A.-M. Albu, F. Stanculescu, Thin Solid Films 520, 1251 (2011)

    Article  ADS  Google Scholar 

  3. Y.-S. Park, J. Berger, Z. Tang, L. Müller-Meskamp, A.F. Lasagni, K. Vandewal, K. Leo, Appl. Phys. Lett. 109, 093301 (2016)

    Article  ADS  Google Scholar 

  4. Y.J. Wang, J.G. Lu, H.P.D. Shieh, IEEE Photon. J. 8, 1600108 (2016)

    Google Scholar 

  5. S. Antohe, S. Iftimie, L. Hrostea, V.A. Antohe, M. Girtan, Thin Solid Films 642, 219 (2017)

    Article  ADS  Google Scholar 

  6. Y. Gao, F. Jin, W. Li, Z. Su, B. Chu, J. Wang, H. Zhao, H. Wu, C. Liu, F. Hou, T. Lin, Q. Song, Sci. Rep. 6, 23916 (2016)

    Article  ADS  Google Scholar 

  7. A. Lv, Y. Pan, L. Chi, Sensors 17, 213 (2017)

    Article  Google Scholar 

  8. D. Elkington, N. Cooling, W. Belcher, P.C. Dastoor, X.-J. Zhou, Electronics 3, 234 (2014)

    Article  Google Scholar 

  9. R.A. Ugarte, N. Rady, S. Venkatesan, T.W. Hudnall, A. Zakhidov, Org. Electron. 44, 126 (2017)

    Article  Google Scholar 

  10. Y. Im, S.Y. Byun, J.H. Kim, D.R. Lee, C.S. Oh, K.S. Yook, J.Y. Lee, Adv. Funct. Mater. 27, 1603007 (2016)

    Article  Google Scholar 

  11. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  ADS  Google Scholar 

  12. C.J. Brabec, N.S. Sariciftci, Appl. Phys. Lett. 78, 841 (2001)

    Article  ADS  Google Scholar 

  13. C. Zhang, Y. Hu, A. Tang, Z. Deng, F. Teng, J. Appl. Polym. Sci. 132, 41757 (2015)

    Google Scholar 

  14. G.A. Nemnes, S. Iftimie, A. Palici, A. Nicolaev, T.L. Mitran, A. Radu, S. Antohe, Appl. Surf. Sci. 424, 264 (2017)

    Article  ADS  Google Scholar 

  15. Y.-S. Liu, X.-G. Wan, F. Wang, J.-Y. Zhou, G. Long, J.-G. Tian, J. You, Y. Yang, Y.-S. Chen, Adv. Energy Mater. 1, 771 (2011)

    Article  Google Scholar 

  16. S. Sankaran, K. Glaser, S. Gärtner, T. Rödlmeier, K. Sudau, G. Hernandez-Sosa, A. Colsmann, Org. Electron. 28, 118 (2016)

    Article  Google Scholar 

  17. A.P. Caricato et al., Appl. Phys. Lett. 100, 073306 (2012)

    Article  ADS  Google Scholar 

  18. C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiuand, J.-H. Lee, Int. J. Mol. Sci. 12, 476 (2011)

    Article  Google Scholar 

  19. K. Yoshida, T. Oku, A. Suzuki, T. Akiyama, Y. Yamasaki, Adv. Chem. Eng. Sci. 2, 461 (2012)

    Article  Google Scholar 

  20. L. Baschir, S. Antohe, A. Radu, R. Constantineanu, S. Iftimie, M. Popescu, I.D. Simandan, Dig. J. Nanomater. Biostruct. 8, 1645 (2013)

    Google Scholar 

  21. H. Huang, S. Chen, X. Gao, W. Chen, A.T. Wee, ACS Nano 3, 3431 (2009)

    Article  Google Scholar 

  22. F. Sanculescu, A. Stanculescu, M. Socol, J. Optoelectron. Adv. Mater. 9, 1352 (2007)

    Google Scholar 

  23. A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, F. Stanculescu, M. Girtan, Appl. Phys. A 104, 921 (2011)

    Article  ADS  Google Scholar 

  24. S. Iftimie, R. Mallet, J. Merigeon, L. Ion, M. Girtan, S. Antohe, Dig. J. Nanomater. Biostruct. 10, 221 (2015)

    Google Scholar 

  25. A. Stanculescu, O. Rasoga, N. Preda, M. Socol, F. Stanculescu, I. Ionita, A.-M. Albu, G. Socol, Ferroelectrics 389, 159 (2009)

    Article  Google Scholar 

  26. L. Cao, Y.-Z. Wang, D.-C. Qi, J.-Q. Zhong, A.T.S. Wee, X.-Y. Gao, J. Phys. Chem. C 117, 25636 (2013)

    Article  Google Scholar 

  27. L. Gaffo, M.R. Cordeiro, A.R. Freitas, W.C. Moreira, E.M. Girotto, V. Zucolotto, J. Mater. Sci. 45, 1366 (2010)

    Article  ADS  Google Scholar 

  28. R. Seoudi, G.S. El-Bahy, Z.A. El Sayed, J. Mol. Struct. 753, 119 (2005)

    Article  ADS  Google Scholar 

  29. M. Pandey, G.M. Joshi, K. Deshmukh, N.N. Ghosh, N.A.N. Raj, J. Phys. Chem. Solids 80, 52 (2015)

    Article  ADS  Google Scholar 

  30. Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouchi, J. Appl. Phys. 96, 5534 (2004)

    Article  ADS  Google Scholar 

  31. E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, J. Phys. Conf. Ser. 59, 126 (2007)

    Article  ADS  Google Scholar 

  32. N. Mozhzhukhina, L.P. Méndez, De Leo, E.J. Calvo, J. Phys. Chem. C 117, 18375 (2013)

    Article  Google Scholar 

  33. S. Senthilarasu, Y.B. Hahn, S.H. Lee, J. Appl. Phys. 102, 043512 (2007)

    Article  ADS  Google Scholar 

  34. D.E. Motaung, G.F. Malgas, C.J. Arendse, Synth. Met. 160, 876 (2010)

    Article  Google Scholar 

  35. G.M. Kumar, S. Chidambaram, J.K. Park, Jinsub, R. Jayavel, Hybrid nanostructures for photovoltaics, in Nanostructure, nanosystems, and nanostructured materials, 1st edn. ed. by A.K. By, V.I. Haghi, G.E. Kodolov, P. Zaikov, M. Sivakumar (Apple Academic Press, Boca Raton, 2013), p 462

    Google Scholar 

  36. A. Stanculescu, F. Stanculescu, L. Tugulea, M. Socol, Mater. Sci. Forum 514–516, 956 (2006)

    Article  Google Scholar 

  37. J. Zou, K. Zhang, J. Li, Y. Zhao, Y. Wang, S. Kumar, R. Pillai, H.V. Demir, X. Sun, M.B. Chan-Park, Q. Zhang, Sci. Rep. 5, 11755 (2015)

    Article  ADS  Google Scholar 

  38. F.T. Reis, D. Mencaraglia, S.O. Saad, I. Séguy, M. Oukachmih, P. Jolinat, P. Destruel, Synth. Met. 138, 33 (2003)

    Article  Google Scholar 

  39. M. Saleheen, S.M. Arnab, M.Z. Kabir, Energies 9, 412 (2016)

    Article  Google Scholar 

  40. G. Weihao, An overview on P3HT:PCBM, the most efficient organic solar cell material so far. Solid State Phys. 1, 1–11 (2009)

    Google Scholar 

  41. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Romanian Ministry of Research and Innovation through National Core Program from PN18-110201 and LAPLAS V (3N/2018) contracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Socol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Socol, M., Preda, N., Breazu, C. et al. Flexible organic heterostructures obtained by MAPLE. Appl. Phys. A 124, 602 (2018). https://doi.org/10.1007/s00339-018-1960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1960-3

Navigation