Skip to main content
Log in

Multiferroic (Nd,Fe)-doped PbTiO3 thin films obtained by pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the successful growth of multiferroic (Nd,Fe)-doped PbTiO3 thin films with the composition (Pb0.88Nd0.08)(Ti0.93Fe0.05Mn0.02)O3 (PNFT) using pulsed laser deposition. The deposited films have been investigated by XRD, SEM, energy-dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), atomic force microscopy, magnetic force microscopy, piezoforce microscopy, spectroscopic ellipsometry (SE) and dielectric spectroscopy measurements. PNFT films deposited on different substrates (MgO, SrTiO3 and Nb:SrTiO3) are (001) oriented, preserving the orientation of the single-crystal substrates. EDS mapping and SIMS across the film thickness probed the uniform distribution of all the elements. The refractive index and extinction coefficient have been obtained with the SE software package and refined with an optical-graded model. Magnetic domains and ferroelectric domains have been evidenced at microscopic scale. Good dielectric properties and low loss, comparable to those of bulk materials, have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  2. S. Dong, J.-M. Liu, S.-W. Cheong, Z. Ren, Multiferroic materials: symmetry, entanglement, excitation, and topology, Adv. Phys. 64, 519–626 (2015)

    Article  ADS  Google Scholar 

  3. N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, P.H. Ghosez, Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Comm 6, 6677 (2015)

    Article  ADS  Google Scholar 

  4. T. Jia, Z. Cheng, H. Zhao, H. Kimura, Domain switching in single-phase multiferroics. Appl. Phys. Rev. 5, 021102 (2018)

    Article  ADS  Google Scholar 

  5. D.M. Evans, M. Alexe, A. Schilling, A. Kumar, D. Sanchez, N. Ortega, R.S. Katiyar, J.F. Scott, J. Marty Gregg, The nature of magnetoelectric coupling in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3. Adv. Mater. 27, 6068–6073 (2015)

    Article  Google Scholar 

  6. S. Fusil, V. Garcia, A. Barthélémy, M. Bibes, Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014)

    Article  ADS  Google Scholar 

  7. S.A. Larregola, J.C. Pedregosa, M. Alguero, R. Jimenez, M. Garcia-Hernandez, M.T. Fernandez-Diaz, J.A. Alonso, Novel near-room-temperature type I multiferroic: Pb(Fe0.5Ti0.25W0.25)O3 with coexistence of ferroelectricity and weak ferromagnetism. Chem. Mater. 24, 2664–2672 (2012)

    Article  Google Scholar 

  8. W. Peng, N. Lemée, J.-L. Dellis, V.V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, M.G. Karkut, Epitaxial growth and magnetoelectric relaxor behavior in multiferroic 0.8Pb(Fe1/2Nb1/2)O3-0.2Pb(Mg1/2W1/2)O3 thin films. Appl. Phys. Lett. 95, 132501–132507 (2009)

    Article  ADS  Google Scholar 

  9. D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron-tantalate-lead zirconate titanate (PFT/PZT). AIP Adv. 1, 042161–042169 (2011)

    Article  ADS  Google Scholar 

  10. A. Kumar, G.L. Sharma, R.S. Katiyar, R. Pirc, R. Blinc, J.F. Scott, Magnetic control of large room-temperature polarization. J. Phys.Condens. Matter 21, 382201–382204 (2009)

    Article  Google Scholar 

  11. A. Kumar, R.S. Katiyar, J.F. Scott, Fabrication and characterization of the multiferroic birelaxor lead-iron-tungstate/lead-zirconate-titanate. J. Appl. Phys. 108, 064101–064105 (2010)

    Article  ADS  Google Scholar 

  12. A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, Z. Jaglicic, Magnetoelectric relaxor. Appl. Phys. Lett. 91, 012901–012905 (2007)

    Article  ADS  Google Scholar 

  13. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  14. C.-H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953 (2012)

    Article  Google Scholar 

  15. N.D. Scarisoreanu, F. Craciun, R. Birjega, V. Ion, V.S. Teodorescu, C. Ghica, R. Negrea, M. Dinescu, Joining chemical pressure and epitaxial strain to yield Y-doped BiFeO3 thin films with high dielectric response. Sci. Rep. 6, 25531–25535 (2016)

    Article  ADS  Google Scholar 

  16. F. Craciun, E. Dimitriu, M. Grigoras, N. Lupu, Multiferroic perovskite (Pb0.845Sm0.08Fe0.035)(Ti0.98Mn0.02)O3 with ferroelectric and weak ferromagnetic properties. Appl. Phys. Lett. 102, 242901–242903 (2013)

    Article  ADS  Google Scholar 

  17. F. Craciun, E. Dimitriu, M. Grigoras, N. Lupu, B.S. Vasile, M. Cernea, The emergence of magnetic properties in (Pb0.845Sm0.08Fe0.035)(Ti0.98Mn0.02)O3 and (Pb0.88Nd0.08) (Ti0.98Mn0.02)O3 perovskite ceramics. J. Appl. Phys. 116, 074101–074101 (2014)

    Article  ADS  Google Scholar 

  18. F. Craciun, M. Cernea, V. Fruth, M. Zaharescu, I. Atkinson, N. Stanica, L.C. Tanase, L. Diamandescu, A. Iuga, C. Galassi, Novel multiferroic (Pb1 – 3x/2Ndx)(Ti0.98–yFeyMn0.02)O3 ceramics with coexisting ferroelectricity and ferromagnetism at ambient temperature. Mater. Des. 110, 693–704 (2016)

    Article  Google Scholar 

  19. D. Sando, A. Barthelemy, M. Bibes, BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter. 26, 473201 (2014)

    Article  ADS  Google Scholar 

  20. K. Shimamoto, Y.W. Windsor, Y. Hu, M. Ramakrishnan, A. Alberca, E.M. Bothschafter, L. Rettig, Th Lippert, U. Staub, C.W. Schneider, Multiferroic properties of uniaxially compressed orthorhombic HoMnO3 thin films. Appl. Phys. Lett. 108, 112904 (2016)

    Article  ADS  Google Scholar 

  21. T. Hajlaoui, L. Corbellini, C. Harnagea, M. Josse, A. Pignolet, Enhanced ferroelectric properties in multiferroic epitaxial Ba2EuFeNb4O15 thin films grown by pulsed laser deposition. Mater. Res. Bull. 87, 186–192 (2017)

    Article  Google Scholar 

  22. T. Hajlaoui, C. Harnagea, A. Pignolet, Influence of lanthanide ions on multiferroic properties of Ba2LnFeNb4O15 (Ln = Eu3+, Sm3 + and Nd3+) thin films grown on silicon by pulsed laser deposition. Mater. Lett. 198, 136–139 (2017)

    Article  Google Scholar 

  23. F. Craciun, F. Cordero, B.S. Vasile, V. Fruth, M. Zaharescu, I. Atkinson, R. Trusca, L. Diamandescu, L.C. Tanase, P. Galizia, M. Cernea, C. Galassi, Combined use of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy for estimating incipient phase separation in lead titanate-based multiferroics. Phys. Chem. Chem. Phys. 20, 14652–14663 (2018)

    Article  Google Scholar 

  24. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

Download references

Acknowledgements

Financial support from Joint Project CNR, Romanian Academy “Study and Development of Single-Phase Multiferroic Perovskite Ceramic and Thin Films for Multifunctional Devices” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Craciun or M. Dinescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitru-Grivei, M., Ion, V., Birjega, R. et al. Multiferroic (Nd,Fe)-doped PbTiO3 thin films obtained by pulsed laser deposition. Appl. Phys. A 125, 113 (2019). https://doi.org/10.1007/s00339-019-2403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2403-5

Navigation