Skip to main content
Log in

Voltage- and temperature-dependent electrical behavior of gap-type Ag–Ag2S–Pt atomic switch

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The voltage- and the temperature-dependent electrical behavior of a gap-type Ag–Ag2S–Pt atomic switch is theoretically investigated. The electrical tunnel current passing through the switch is calculated and the growth of Ag nanowires between two electrodes is simulated. Our calculations show the switching time (the time that is required to decrease the resistance of switch below the resistance quantum RQ ≈ 6.5 kΩ) exponentially decreases as the applied voltage increases that agrees very well with experimental findings. Furthermore, we assumed the Ag2S layer is a few atomic layer thick so the diffusion time of Ag+ ions within the Ag2S layer can be neglected compared to the formation of Ag nanowires. As a result, the switching time decreases exponentially as temperature increases. The switching time is calculated while different DC voltages are applied to the switch over temperature range of T = 300–350 K. The results imply both of the voltage- and the temperature-dependent behavior of the gap-type Ag–Ag2S–Pt atomic switch is dominated by the Coulomb blockade (CB) effect of Ag nanowires as electrons require energy to overcome the CB energy of Ag nanowires to sustain the growth of Ag nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332, 702 (2011)

    Article  ADS  Google Scholar 

  2. M.M.A. Yajadda, K.H. Müller, D.I. Farrant, K. Ostrikov, Appl. Phys. Lett. 100, 11105 (2012)

    Article  Google Scholar 

  3. J. Herrmann, K.H. Müller, T. Reda, G.R. Baxter, B. Raguse, G.J.J.B. de Groot, R. Chai, M. Roberts, L. Wieczorek, Appl. Phys. Lett. 91, 183105 (2007)

    Article  ADS  Google Scholar 

  4. M.M.A. Yajadda, I. Levchenko, K. Ostrikov, J. Appl. Phys. 110, 023303 (2011)

    Article  ADS  Google Scholar 

  5. M. Moaied, M.M.A. Yajadda, K. Ostrikov, Plasmonics 10, 1615 (2015)

    Article  Google Scholar 

  6. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)

    Article  ADS  Google Scholar 

  7. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Nature 433, 47 (2005)

    Article  ADS  Google Scholar 

  8. A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, H.H. Shieh, M. Aono, A.Z. Stieg, J.K. Gimzewski, PLoS ONE 7, e42772 (2012)

    Article  ADS  Google Scholar 

  9. E.C. Demis, R. Aguilera, H.O. Sillin, K. Scharnhorst, E.J. Sandouk, M. Aono, A.Z. Stieg, J.K. Gimzewski, Nanotechnology 26, 204003 (2015)

    Article  ADS  Google Scholar 

  10. S.K. Bose, J.B. Mallinson, R.M. Gazoni, S.A. Brown, IEEE Trans. Electron Devices 64, 5194 (2017)

    Article  ADS  Google Scholar 

  11. K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, J. Appl. Phys. 91, 10110 (2002)

    Article  ADS  Google Scholar 

  12. Z. Wang, T. Kadohira, T. Tada, S. Watanabe, Nano Lett. 7, 2688 (2007)

    Article  ADS  Google Scholar 

  13. C. Liang, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology 18, 485202 (2007)

    Article  Google Scholar 

  14. A. Schmid, Phys. Rev. Lett. 51, 1506 (1983)

    Article  ADS  Google Scholar 

  15. A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka, T. Hasegawa, M. Aono, J. Phys. Chem. Lett. 1, 604 (2010)

    Article  Google Scholar 

  16. M.M.A. Yajadda, X. Gao, Phys. Lett. A 382, 3031 (2018)

    Article  ADS  Google Scholar 

  17. K.H.- Müller, M.M.A. Yajadda, J. Appl. Phys. 111, 123705 (2012)

    Article  ADS  Google Scholar 

  18. M.M.A. Yajadda, J. Appl. Phys. 116, 153707 (2014)

    Article  ADS  Google Scholar 

  19. A.E. Hanna, M. Tinkham, Phys. Rev. B 44, 5919 (1991)

    Article  ADS  Google Scholar 

  20. C.M. Butler, J. Appl. Phys. 51, 5607 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Yajadda would like to acknowledge the Australian Research Council, Centre of Excellence for Integrative Brain Function and the University of Sydney for their support. Gao would like to acknowledge the University of Melbourne for its support through the McKenzie Postdoctoral Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Massoud Aghili Yajadda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili Yajadda, M.M., Gao, X. Voltage- and temperature-dependent electrical behavior of gap-type Ag–Ag2S–Pt atomic switch. Appl. Phys. A 125, 684 (2019). https://doi.org/10.1007/s00339-019-2979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2979-9

Navigation