Skip to main content

Advertisement

Log in

One-step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One-step solution combustion of ZnFe2O4 and ZnFe1.6O4 nanoparticles was represented. To obtain a better dispersion of nanoparticles with high specific surface area values, salt-assisted solution reaction was applied using KCl as a key criterion. Structure, chemical composition, microstructure, photoluminescence emissions, magnetic properties, and band gap of the samples were also studied. Results showed that ZnFe2O4 and ZnFe1.6O4 crystalline phases were synthesized in a one-step combustion reaction without any post-heating process requirement. The cation distributions amongst tetrahedral and octahedral sites in samples were estimated by modified Bertaut method using XRD data. Both stoichiometric and non-stoichiometric zinc ferrites had a partial reverse spinel structure with high degree of inversion. FTIR spectra demonstrated some bands associated with Fe–O and Zn–O bonds. Moreover, no unwanted impurity such as nitrate was detected in synthesized powders. Microstructure and nitrogen adsorption/desorption studies showed that the synthesized powders were mesoporous with high specific surface area, together with agglomerated nanoparticles. Magnetization curves showed that both ZnFe2O4 and ZnFe1.6O4 samples were superparamagnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Guo, M. Lv, G. Han, C. Wen, Q. Wang, H. Li, X. Zhao, Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment. Materials 9(10), 806 (2016)

    ADS  Google Scholar 

  2. C. Anchieta, A. Cancelier, M. Mazutti, S. Jahn, R. Kuhn, A. Gündel, O. Chiavone-Filho, E. Foletto, Effects of solvent diols on the synthesis of ZnFe2O4 particles and their use as heterogeneous photo-fenton catalysts. Materials 7(9), 6281 (2014)

    ADS  Google Scholar 

  3. J. Zhang, J.-M. Song, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone. Sens. Actuators B Chem. 221, 55–62 (2015)

    Google Scholar 

  4. X. Zhou, X. Li, H. Sun, P. Sun, X. Liang, F. Liu, X. Hu, G. Lu, Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl. Mater. Interfaces 7(28), 15414–15421 (2015)

    Google Scholar 

  5. H. Xu, X. Chen, L. Chen, L.E. Li, L. Xu, J. Yang, Y. Qian, A comparative study of nanoparticles and nanospheres ZnFe2O4 as anode material for lithium ion batteries. Int. J. Electrochem. Sci. 7(9), 7976–7983 (2012)

    Google Scholar 

  6. N. Matinise, K. Kaviyarasu, N. Mongwaketsi, S. Khamlich, L. Kotsedi, N. Mayedwa, M. Maaza, Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Appl. Surf. Sci. 446, 66–73 (2018)

    ADS  Google Scholar 

  7. M.K. Lima-Tenório, E.T. Tenório-Neto, A.A.W. Hechenleitner, H. Fessi, E.A.G. Pineda, CoFe2O4 and ZnFe2O4 nanoparticles: an overview about structure, properties, synthesis and biomedical applications. J. Colloid Sci. Biotechnol. 5(1), 45–54 (2016)

    Google Scholar 

  8. S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. Mater. Lett. 162, 60–63 (2016)

    Google Scholar 

  9. P. Suppuraj, G. Thirunarayanan, M. Swaminathan, I. Muthuvel, Facile synthesis of spinel nanocrystalline ZnFe2O4: enhanced photocatalytic and microbial applications. Mater. Sci. Appl. Chem. 34, 5 (2017)

    Google Scholar 

  10. I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn.Mater. 324(6), 903–915 (2012)

    ADS  Google Scholar 

  11. P.A. Vinosha, L.A. Mely, J.E. Jeronsia, S. Krishnan, S.J. Das, Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik 134, 99–108 (2017)

    ADS  Google Scholar 

  12. F. Iqbal, M.I.A. Mutalib, M.S. Shaharun, M. Khan, B. Abdullah, Synthesis of ZnFe2O4 using sol–gel method: effect of different calcination parameters. Proc. Eng. 148, 787–794 (2016)

    Google Scholar 

  13. R. Liu, M. Lv, Q. Wang, H. Li, P. Guo, X.S. Zhao, Solvothermal synthesis of size-tunable ZnFe2O4 colloidal nanocrystal assemblies and their electrocatalytic activity towards hydrogen peroxide. J. Magn. Magn. Mater. 424, 155–160 (2017)

    ADS  Google Scholar 

  14. G. Preethi, A.S. Ninan, K. Kumar, R. Balan, H.P. Nagaswarupa, Molten salt synthesis of nanocrystalline ZnFe2O4 and its photocatalytic dye degradation studies. Mater. Today Proc. 4(11, Part 3), 11816–11819 (2017)

    Google Scholar 

  15. U. Kurtan, H. Erdemi, A. Baykal, H. Güngüneş, Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)

    Google Scholar 

  16. S. Li, Q. Liu, R. Liu, R. Lu, J. Xiang, Removal performance of methyl blue onto magnetic ZnFe2O4 nanoparticles prepared via the solution combustion process. J. Nanosci. Nanotechnol. 17(6), 4112–4118 (2017)

    Google Scholar 

  17. J. Liu, D. Wang, P. Dong, J. Zhao, Q. Meng, Y. Zhang, X. Li, Effect of glycine-to-nitrate ratio on solution combustion synthesis of ZnFe2O4 as anode materials for lithium ion batteries. Int. J. Electrochem. Sci. 12(5), 3741–3755 (2017)

    Google Scholar 

  18. A. Manikandan, S.A. Antony, R. Sridhar, S. Ramakrishna, M. Bououdina, A simple combustion synthesis and optical studies of magnetic Zn1 xNixFe2O4 nanostructures for photoelectrochemical applications. J. Nanosci. Nanotechnol. 15(7), 4948–4960 (2015)

    Google Scholar 

  19. K. Shetty, L. Renuka, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, D. Rangappa, S.C. Prashantha, K. Ashwini, A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: morphology, impedance and photocatalytic studies. Mater. Today. Proc. 4(11, Part 3), 11806–11815 (2017)

    Google Scholar 

  20. R.C. Sripriya, V.A.F. Samson, S. Anand, J. Madhavan, M.V.A. Raj, Comparative studies of structural, magnetic and photocatalytic degradation on 4-chlorophenol by ZnFe2O4 nanostructures prepared via cost effective combustion methods. J Mater. Sci. Mater. Electron. 29, 14084–14092 (2018)

    Google Scholar 

  21. S. Sun, X. Yang, Y. Zhang, F. Zhang, J. Ding, J. Bao, C. Gao, Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Prog. Nat. Sci. Mater. Int. 22(6), 639–643 (2012)

    Google Scholar 

  22. M.F. Valan, A. Manikandan, S.A. Antony, Microwave combustion synthesis and characterization studies of magnetic Zn1 xCdxFe2O4 (0 ≤ x ≤ 0.5) nanoparticles. J. Nanosci. Nanotechnol. 15(6), 4543–4551 (2015)

    Google Scholar 

  23. M. Shahmirzaee, M.S. Afarani, A.M. Arabi, A.I. Nejhad, In situ crystallization of ZnAl2O4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater. Res. Chem. Intermed. 43(1), 321–340 (2017)

    Google Scholar 

  24. M. Zahiri, M.S. Afarani, A.M. Arabi, Dual functions of thiourea for solution combustion synthesis of ZnO/ZnS composite powders: fuel and sulphur source. Appl. Phys. A 124(10), 663 (2018)

    ADS  Google Scholar 

  25. G. Mahmoudzadeh, S. Khorrami, S. Madani, M. Frounchi, Influence of different fuel additives at different molar ratios on the crystallite phase formation process, structural characteristics and morphology of dispersed zinc ferrite powders by sol-gel auto combustion. J. Ceram. Process. Res. 13(4), 368–372 (2012)

    Google Scholar 

  26. G. Raja, S. Gopinath, K. Sivakumar, Effect of glycine and l-arginine as processing fuels in the synthesis of ZnFe2O4 nanostructures prepared via a facile microwave combustion method. Ceram. Int. 42(7), 8763–8768 (2016)

    Google Scholar 

  27. A. Shanmugavani, R.K. Selvan, S. Layek, C. Sanjeeviraja, Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: Comparison between aspartic acid and glycine as fuels. J. Magn. Magn. Mater. 354, 363–371 (2014)

    ADS  Google Scholar 

  28. N. Rezlescu, E. Rezlescu, P.D. Popa, E. Popovici, C. Doroftei, M. Ignat, Preparation and characterization of spinel-type MeFe2O4 (Me = Cu, Cd, Ni and Zn) for catalyst applications. Mater. Chem. Phys. 137(3), 922–927 (2013)

    Google Scholar 

  29. N. Deraz, A. Alarifi, Microstructure and magnetic studies of zinc ferrite nano-particles. Int. J. Electrochem. Sci. 7, 6501–6511 (2012)

    Google Scholar 

  30. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties. Ceram. Int. 42(2, Part A), 2741–2749 (2016)

    Google Scholar 

  31. M. Bini, C. Tondo, D. Capsoni, M.C. Mozzati, B. Albini, P. Galinetto, Superparamagnetic ZnFe2O4 nanoparticles: the effect of Ca and Gd doping. Mater. Chem. Phys. 204, 72–82 (2018)

    Google Scholar 

  32. S.B. Patil, H.S.B. Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, M.V. Kumar, Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: Application to degradation of mixed dyes and antibacterial activities. Mater. Chem. Phys. 212, 351–362 (2018)

    Google Scholar 

  33. S. Zawar, S. Atiq, M. Tabasum, S. Riaz, S. Naseem, Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J. Saudi Chem. Soc. 23, 417–426 (2018)

    Google Scholar 

  34. R. Zhang, J. Huang, J. Zhao, Z. Sun, Y. Wang, Sol−gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization. Energy Fuels 21(5), 2682–2687 (2007)

    Google Scholar 

  35. J. Yang, X. Li, X. Deng, Z. Huang, Y. Zhang, Salt-assisted solution combustion synthesis of ZnFe2O4 nanoparticles and photocatalytic activity with TiO2 (P25) as nanocomposite. J. Ceram. Soc. Jpn. 120(1408), 579–583 (2012)

    Google Scholar 

  36. Q. Zhou, Y. Mou, X. Ma, L. Xue, Y. Yan, Effect of fuel-to-oxidizer ratios on combustion mode and microstructure of Li2TiO3 nanoscale powders. J Eur Ceram Soc 34(3), 801–807 (2014)

    Google Scholar 

  37. J. Tauc, A. Menth, States in the gap. J. Non Cryst. Solids 8–10, 569–585 (1972)

    ADS  Google Scholar 

  38. M. Sharifitabar, J.V. Khaki, M.H. Sabzevar, Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2–Al–C system. Int. J. Refract. Metals Hard Mater. 47, 93–101 (2014)

    Google Scholar 

  39. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction (Pearson Education, London, 2014)

    Google Scholar 

  40. D.R. Mane, D.D. Birajdar, S. Patil, S.E. Shirsath, R.H. Kadam, Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7 xCoxZn0.3Fe2O4 (0 ≤ x ≤ 0.5). J. Sol Gel Sci. Technol. 58(1), 70–79 (2011)

    Google Scholar 

  41. B. Issa, I. Obaidat, B. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266 (2013)

    Google Scholar 

  42. S.A. Hosseini, M. Davodian, A.R. Abbasian, Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co–Ni layered double nano hydroxides. J. Taiwan Inst. Chem. Eng. 75, 97–104 (2017)

    Google Scholar 

  43. L. Skolnick, S. Kondo, L. Lavine, An improved X-ray method for determining cation distribution in ferrites. J. Appl. Phys. 29(2), 198–203 (1958)

    ADS  Google Scholar 

  44. H. Ohnishi, T. Teranishi, Crystal distortion in copper ferrite-chromite series. J. Phys. Soc. Jpn. 16(1), 35–43 (1961)

    ADS  Google Scholar 

  45. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13(3), 539–547 (2011)

    ADS  Google Scholar 

  46. E. Prince, International tables for crystallography vol C, mathematical, physical and chemical tables (Kluwer Academic publishers, Dordrecht, 2004)

    Google Scholar 

  47. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano. Lett. 3(1), 8 (2013)

    Google Scholar 

  48. N. Najmoddin, A. Beitollahi, H. Kavas, S.M. Mohseni, H. Rezaie, J. Åkerman, M.S. Toprak, XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40(2), 3619–3625 (2014)

    Google Scholar 

  49. M. Satalkar, S.N. Kane, On the study of structural properties and cation distribution of Zn0.75 xNixMg0.15Cu0.1Fe2O4 nano ferrite: effect of Ni addition. J. Phys. Conf. Ser. 755(1), 012050 (2016)

    Google Scholar 

  50. K.E. Sickafus, M.J. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)

    Google Scholar 

  51. Database of Ionic Radii (2018) Hosted by the Atomistic Simulation Group in the Materials Department of Imperial College, https://abulafia.mt.ic.ac.uk/shannon/ptable.php. Accessed July 2019

  52. R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Spectrometric identification of organic compounds (Wiley, New York, 2014)

    Google Scholar 

  53. S.A. Hosseini, V. Majidi, A.R. Abbasian, Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization. J. Sulfur. Chem. 39(2), 119–129 (2018)

    Google Scholar 

  54. J. Kurian, M.J. Mathew, Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018)

    ADS  Google Scholar 

  55. M. Araghi, M. Ghahari, M.S. Afarani, Synthesis and investigation of antimicrobial properties of SiO2@Cu rods with core–shell structure. J. Environ. Chem. Eng. 5(2), 1780–1790 (2017)

    Google Scholar 

  56. M.M. Naiini, M. Ghahari, M.S. Afarani, Synthesis of hollow tadpole-like silica particles. Part Sci. Technol. 33(5), 456–462 (2015)

    Google Scholar 

  57. N. Aliyan, S.M. Mirkazemi, S.M. Masoudpanah, S. Akbari, The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl. Phys. A 123(6), 446 (2017)

    ADS  Google Scholar 

  58. B.B.V.S.V. Prasad, K.V. Ramesh, A. Srinivas, Structural and magnetic studies of nano-crystalline ferrites MFe2O4 (M = Zn, Ni, Cu, and Co) synthesized via citrate gel autocombustion method. J. Supercond. Novel Magn. 30(12), 3523–3535 (2017)

    Google Scholar 

  59. N.M. Deraz, Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles. J. Anal. Appl. Pyrol. 91(1), 48–54 (2011)

    Google Scholar 

  60. S. Kanagesan, M. Hashim, S.A.B. Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B.P.C. Rao, Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol–gel self-combustion method. Appl. Sci. 6(9), 184 (2016)

    Google Scholar 

  61. A.A. Oladipo, MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI). Process Saf Environ Prot 116, 413–423 (2018)

    Google Scholar 

  62. D. Vollath, Nanomaterials: an introduction to synthesis, properties and applications (Wiley, New York, 2013)

    Google Scholar 

  63. R. Tholkappiyan, K. Vishista, N-N-methylene bis acrylamide: a novel fuel for combustion synthesis of zinc ferrite nanoparticles and studied by X-Ray photoelectron spectroscopy. Int. J. ChemTech. Res. 6(5), 2834–2842 (2014)

    Google Scholar 

  64. R. Rachna, N.B. Singh, A. Agarwal, Preparation, characterization, properties and applications of nano zinc ferrite. Mater. Today Proc. 5(3, Part 1), 9148–9155 (2018)

    Google Scholar 

  65. R. Saranya, R.A. Raj, M.S. AlSalhi, S. Devanesan, Dependence of catalytic activity of nanocrystalline nickel ferrite on its structural, morphological, optical, and magnetic properties in aerobic oxidation of benzyl alcohol. J. Supercond. Novel. Magn. 31(4), 1219–1225 (2018)

    Google Scholar 

  66. D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang, D. Xue, Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays. Nanoscale Res. Lett. 5(8), 1289 (2010)

    ADS  Google Scholar 

  67. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloy. Compd. 741, 123–130 (2018)

    Google Scholar 

  68. S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7(1), 470 (2012)

    ADS  Google Scholar 

  69. M. Lorenz, M. Ziese, G. Wagner, J. Lenzner, C. Kranert, K. Brachwitz, H. Hochmuth, P. Esquinazi, M. Grundmann, Exchange bias and magnetodielectric coupling effects in ZnFe2O4–BaTiO3 composite thin films. Cryst. Eng. Commun. 14(20), 6477–6486 (2012)

    Google Scholar 

  70. A. Šutka, R. Parna, M. Zamovskis, V. Kisand, G. Mezinskis, J. Kleperis, M. Maiorov, D. Jakovlev, Effect of antisite defects on the magnetic properties of ZnFe2O4. Phys. Status Solidi (a) 210(9), 1892–1897 (2013)

    Google Scholar 

  71. R.S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer, Magnetic properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J. Supercond. Novel Magn. 28(4), 1417–1423 (2015)

    Google Scholar 

  72. M.K. Roy, H. Bidyut, H.C. Verma, Characteristic length scales of nanosize zinc ferrite. Nanotechnology 17(1), 232 (2006)

    ADS  Google Scholar 

  73. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloy. Compd. 509(9), 3917–3923 (2011)

    Google Scholar 

  74. L. Chauhan, A.K. Shukla, K. Sreenivas, Properties of NiFe2O4 ceramics from powders obtained by auto-combustion synthesis with different fuels. Ceram. Int. 42(10), 12136–12147 (2016)

    Google Scholar 

  75. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, New York, 2011)

    Google Scholar 

  76. H. Xue, Z. Li, X. Wang, X. Fu, Facile synthesis of nanocrystalline zinc ferrite via a self-propagating combustion method. Mater. Lett. 61(2), 347–350 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Nano Pishtaz Sanat Sharif Company (Zahedan, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Abbasian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasian, A.R., Shafiee Afarani, M. One-step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 nanoparticles. Appl. Phys. A 125, 721 (2019). https://doi.org/10.1007/s00339-019-3017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3017-7

Navigation