Skip to main content
Log in

Hybrid nanoelectronic-magnetic device with magnetoresistive core–shell Fe/FeC nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose a concept of hybrid nanoelectronic-magnetic device made of magnetic Fe–C core–shell nanoparticles deposited onto prepatterned Si (111) substrate with basic circuitry made of metallic conductive lines. The synthesis of magnetic material and the creation of nanoelectronic prepatterned interdigitated die are reported and to prove the effectiveness in devices, their magnetotransport properties are investigated. Magnetic Fe/FeC nanoparticles, 11 nm diameter, with a core–shell structure have been prepared by laser pyrolysis. Two different layouts of prepatterned interdigitated die, have been conceived using e-beam lithography, with various geometries. A range of microscopy techniques, transmission electron, scanning and optical, were employed for morphological characterization of the as-obtained structures. Magnetic and magnetotransport characterization using SQUID magnetometry has been performed onto both the core–shell nanoparticles and onto the hybrid device obtained by depositing centrifugated and dispersed core–shell nanoparticles from liquid carrier solutions. From magnetotransport measurements, it has been revealed that the hybrid device made of Fe/FeC nanosized materials on prepatterned interdigitated die exhibit a large giant magnetoresistive (GMR) effect of about 8% at 300 K. This result is promising in view of the use of such devices as arrays of nanosensors and in spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11

Similar content being viewed by others

References

  1. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989–1992 (2000)

    Article  ADS  Google Scholar 

  2. S. Sun, C.B. Murray, J. Appl. Phys. 85, 4325–4327 (1999)

    Article  ADS  Google Scholar 

  3. M. Chen, D.E. Nikles, J. Appl. Phys. 91, 8477–8479 (2002)

    Article  ADS  Google Scholar 

  4. H. Zeng, S. Sun, T.S. Vedantam, J.P. Liu, Z.R. Dai, Z.L. Wang, Appl. Phys. Lett. 80, 2583–2585 (2002)

    Article  ADS  Google Scholar 

  5. T. Shinjo, Nanomagnetism and spintronics (Elsevier, New York, 2009)

    Google Scholar 

  6. I. Zutic, J. Fabian, S. Sarma, Rev. Mod. Phys. 76, 323–409 (2004)

    Article  ADS  Google Scholar 

  7. J.S. Moodera, G. Mathon, J. Magn. Magn. Mater. 200, 248–255 (1999)

    Article  ADS  Google Scholar 

  8. M.N. Baibich, J.M. Broto, A. Fert, F. van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  9. S.K. Mishra et al., Phys. Rev. B 81, 212404 (2010)

    Article  ADS  Google Scholar 

  10. P. Vlaic, E. Burzo, J. Appl. Phys. 109, 063724 (2011)

    Article  ADS  Google Scholar 

  11. O. Crisan et al., J. Magn. Magn. Mater. 195, 428–436 (1999)

    Article  ADS  Google Scholar 

  12. A.D. Crisan, O. Crisan, Mater. Sci. Technol. 28, 460–466 (2012)

    Article  Google Scholar 

  13. A.D. Crisan, O. Crisan, J. Phys. D: Appl. Phys. 44, 365002 (2011)

    Article  Google Scholar 

  14. O. Crisan, A.D. Crisan, J. Alloys & Compd. 509, 6522–6527 (2011)

    Article  Google Scholar 

  15. O. Crisan, A.D. Crisan, J. Optoelectron. Adv. Mater. 12, 184–192 (2010)

    Google Scholar 

  16. A.D. Crisan, J. Optoelectron. Adv. Mater. 12, 250–256 (2010)

    Google Scholar 

  17. A.D. Crisan, M. Angelakeris, K. Simeonidis, I. Tsiaoussis, O. Crisan, Solid State Sci. 12, 1907–1911 (2010)

    Article  ADS  Google Scholar 

  18. O. Crisan, K. von Haeften, C. Binns, A.M. Ellis, Nanotechnology 19, 505602 (2008)

    Article  Google Scholar 

  19. O. Crisan, K. von Haeften, C. Binns, A.M. Ellis, J. Nanopart. Res. 10, 193–199 (2008)

    Article  ADS  Google Scholar 

  20. J.A. Gonzalez, J.P. Andres, J.A. De Toro, P. Muniz, T. Munoz, O. Crisan, C. Binns, J.M. Riveiro, J. Nanopart. Res. 11, 2105–2011 (2009)

    Article  ADS  Google Scholar 

  21. K. von Haeften, C. Binns, A. Brewer, O. Crisan, P.B. Howes, M.P. Lowe, C. Sibbley-Allen, S.C. Thornton, Eur Phys J D 52, 11–14 (2009)

    Article  ADS  Google Scholar 

  22. C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6, 813–823 (2007)

    Article  ADS  Google Scholar 

  23. P. Freitas, R. Ferreira, S. Cardoso, Proc. IEEE 104, 1894–1918 (2016)

    Article  Google Scholar 

  24. M.T. Cubells-Beltran, C. Reig, J. Madrenas, A. de Marcellis, J. Santos, S. Cardoso, P.P. Freitas, Sensors 16(6), 939 (2016)

    Article  Google Scholar 

  25. R.R. Katti, D. Zou, D. Reed, D. Schipper, O. Hynes, G. Shaw, H. Kaakani, J. Appl. Phys. 93, 7298 (2003)

    Article  ADS  Google Scholar 

  26. M.D. Cubells-Beltrán, C. Reig, A. De Marcellis, E. Figueras, A. Yúfera, B. Zadov, E. Paperno, S. Cardoso, P.P. Freitas, Microelectron. J. 45(6), 702–707 (2014)

    Article  Google Scholar 

  27. S.S.P. Parkin, Appl. Phys. Lett. 69, 3092 (1996)

    Article  ADS  Google Scholar 

  28. D. Karnaushenko, D. Makarov, M. Stöber, D.D. Karnaushenko, S. Baunack, O.G. Schmidt, Adv. Mater. 27(5), 880–885 (2015)

    Article  Google Scholar 

  29. I. Morjan, F. Dumitrache, R. Alexandrescu, C. Fleaca, R. Birjega, C.R. Luculescu, I. Soare, E. Dutu, G. Filoti, V. Kuncser, G. Prodan, N.C. Popa, L. Vekas, Adv. Powd. Technol. 23, 88–96 (2012)

    Article  Google Scholar 

  30. O. Crisan, M. Angelakeris, M. Nogues, Th Kehagias, Ph Komninou, N. Sobal, M. Giersig, N.K. Flevaris, J. Magn. Magn. Mater. 272, E1253–E1254 (2004)

    Article  ADS  Google Scholar 

  31. V.R. Reddy, O. Crisan, A. Gupta, V. Kuncser, A. Banerjee, Thin Solid Films 520, 2184–2189 (2012)

    Article  ADS  Google Scholar 

  32. O. Crisan, J.M. Le Breton, G. Filoti, Sensors and Actuators A 106, 246–250 (2003)

    Article  Google Scholar 

  33. M. Rosenberg, V. Kuncser, O. Crisan, A. Hernando, E. Navarro, G. Filoti, J. Magn. Magn. Mater. 177, 135–136 (1998)

    Article  ADS  Google Scholar 

  34. O. Crisan, J.M. Le Breton, M. Nogues, F. Machizaud, G. Filoti, J. Phys.: Condensed Matter 14, 12599–12609 (2002)

    ADS  Google Scholar 

  35. M. Seqqat, M. Nogues, O. Crisan, V. Kuncser, L. Cristea, A. Jianu, G. Filoti, J.L. Dormann, D. Sayah, M. Godinho, J. Magn. Magn. Mater. 157, 225–226 (1996)

    Article  ADS  Google Scholar 

  36. O. Bomatí-Miguel, P. Tartaj, M.P. Morales, P. Bonville, U. Golla-Schindler, X.Q. Zhao, S. Veintemillas-Verdaguer, Small 2, 1476–1483 (2006)

    Article  Google Scholar 

  37. M.A. García, V. Bouzas, R. Costo, S. Veintemillas, P. Morales, M. García-Hernández, R. Alexandrescu, I. Morjan, P. Gasco, AIP Conf Proc 1275, 26 (2010)

    Article  ADS  Google Scholar 

  38. F. Fabris, E. Lima, C. Quinteros, L. Nener, M. Granada, M. Sirena, R.D. Zysler, H.E. Troiani, V. Leboran, F. Rivadulla, E.L. Winkler, Phys. Rev. Appl. 11, 054089 (2019)

    Article  ADS  Google Scholar 

  39. D. Saha, M. Holub, P. Bhattacharya, Y.C. Liao, Appl. Phys. Lett. 89, 142504 (2006)

    Article  ADS  Google Scholar 

  40. D. Karnaushenko, D. Makarov, C. Yan, R. Streubel, O.G. Schmidt, Adv. Mater. 24, 4518–4522 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported from EU Competitiveness Operational Programme projects POC P_40_296 “Materiale multifuncționale inteligente pentru aplicații de înaltă tehnologie” (MATI2IT) and POC P_37_697 “Boron- and rare-earths-based advanced functional materials” funded through the Romanian Ministry of European Funds as well as from Core Program PN21N–Ministry of Education and Research and PN-III-P1-1.2-PCCDI-2017-0871-UEFISCDI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Crisan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, O., Crisan, A.D., Dumitrache, F. et al. Hybrid nanoelectronic-magnetic device with magnetoresistive core–shell Fe/FeC nanoparticles. Appl. Phys. A 126, 200 (2020). https://doi.org/10.1007/s00339-020-3378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3378-y

Keywords

Navigation