Skip to main content
Log in

Structural, magnetic, and in vitro inhibitory characteristics of Ce-substituted MnFe2O4 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

MnCexFe2-xO4 (x = 0.0, 0.6, 1.4) nanoparticles were successfully synthesized via sol–gel method. Their structural and magnetic properties were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry techniques. The average crystallite size calculated using Scherrer equation was in the range of 26.90–60.44 nm. Scanning electron microscopy showed that the size of nanoparticles is less than 50 nm. Energy-dispersive X-ray results showed that the composition of the elements was relevant as expected from the synthesis. Vibrating sample magnetometry indicated that the samples have soft ferromagnetic properties. The highest saturation magnetization was related to the MnFe2O4 sample after annealing at 700 °C. The in vitro inhibitory activities of MnFe2O4 and MnCe1.4Fe0.6O4 nanoparticles were assessed against pathogenic fungi Aspergillus fumigatus, Candida albicans, and Fusariumoxysporum. Acceptable antifungal effects were observed in the presence of MnCe1.4Fe0.6O4 nanoparticles with minimum inhibition concentration and minimum fungicide concentration susceptibility determinations. As a result, these nanoparticles can be considered as potential antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.H.J. Buschow, Magnetic Materials (University of Amsterdam, The Netherlands, 2015)

    Google Scholar 

  2. A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  3. R. Langer, New methods of drug delivery. Science 249, 1527 (1990)

    Article  ADS  Google Scholar 

  4. S. Rehman, M.A. Almessiere, N. Tashkandi, A. Baykal, Y. Slimani, R. Jermy, V. Ravinayagam, C. Yaman, Fabrication of spinel cobalt ferrite (CoFe2O4) nanoparticles with unique earth element cerium and neodymium for anticandidal activities. Chem. Sel. 4(48), 14329–14334 (2019)

    Google Scholar 

  5. J. Judith Vajaya, G. Sekaran, M. Bououdina, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2013.10.145

    Article  Google Scholar 

  6. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, S. ManjuraHoque, Nanomaterials (2020). https://doi.org/10.3390/nano10112297

    Article  Google Scholar 

  7. I.T. Weber, A.P. Maciel, P.N. Lisboa-Filho, C.O. Paiva-Santos, W.H. Schreider, Y. Maniette, E.R. Leite, E. Longo, Nano Lett. 2, 969 (2002)

    Article  ADS  Google Scholar 

  8. E.R. Leite, A.P. Maciel, I.T. Weber, P.N. Lisboa-Filho, E. Longo, C.O. Paiva-Santos, W.H. Schreider, Y. Maniette, C.A. Pascocimas, A.V.C. Andrade, Adv. Mater. 14(12), 905 (2002)

    Article  Google Scholar 

  9. J.T. Dahle, Y. Arai, Int. J. Environ. Res. Public Health (2015). https://doi.org/10.3390/ijerph120201253

    Article  Google Scholar 

  10. K. Muthuraman, V. Naidu, S.K. Ahamed, T. Vasudev, Int. J Comput. Appl. 65, 23 (2013)

    Google Scholar 

  11. P. Mathura, A. Thakura, M. Singha, J. Magn. Magn. Mater. 320, 1364–1369 (2008)

    Article  ADS  Google Scholar 

  12. S. Meena, K.S. Anantharaju, Y.S. Vidya, L. Renuka, B. Uma, S.C. Sharma, B.S.S. Daruka Prasad et al., Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.11.105

    Article  Google Scholar 

  13. M. Kamran, M. Anis-ur-Rehman, J. Alloys Compd. 822, 153583 (2020)

    Article  Google Scholar 

  14. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S.K. Jaganathan, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) Cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  15. Q. Li, C.F. Conde, A. Conde, L.F. Kiss, Phys. Rev. B72(2005)

  16. T. Suominen, J. Raittila, T. Salminen, K. Schlesier, J. Linden, P. Paturi, J. Magn. Magn. Mater. 309, 278–284 (2007)

    Article  ADS  Google Scholar 

  17. H. Beyzaei, M. KamaliDeljoo, R. Aryan, B. Ghasemi, M.M. Zahedi, M. Moghaddam-Manesh, Chem. Cent. J. 12, 114 (2018)

    Article  Google Scholar 

  18. S. Stankic, S. Suman, F. Haque, J. Vidic, J. Nanobiotechnol. 14, 73 (2016)

    Article  Google Scholar 

  19. I. Albuquerque, P. Farias, C. Christiano Lima dos Santos, F. Correia Sampaio, Bio Med. Res. Int. (2018). https://doi.org/10.1155/2018/1923606

    Article  Google Scholar 

  20. A.M. Jacintha, V. Umapathy, P. Neeraja, S. RexJeyaRajkumar, J. Nanostruct. Chem. (2017). https://doi.org/10.1007/s40097-017-0248-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful the referees for their suggestions to bring the first edition of the paper in the present form and they are highly thankful to the Sistan and Baluchestan University and Zabol University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol Mahmood Davarpanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohafez, F.S., Davarpanah, A.M., Rahdar, A. et al. Structural, magnetic, and in vitro inhibitory characteristics of Ce-substituted MnFe2O4 nanoparticles. Appl. Phys. A 127, 600 (2021). https://doi.org/10.1007/s00339-021-04759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04759-4

Keywords

Navigation