Skip to main content
Log in

Properties of Ni0.5Zn0.5Fe2O4 nanoparticles with the spinel structure synthesized via cryo-chemical method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ni0.5Zn0.5Fe2O4 nanoparticles (NPs) with the spinel structure were synthesized by the cryo-chemical method with further heat treatment in the temperature range of 200–800 °C. Crystalline NPs began to form in one-stage and the degree of crystallinity grew with the increase of the heating temperature. Particles sizes, their size distributions and magnetization also tended to growth directly with the increasing the heating temperature of NPs. Magnetic fluids based on the obtained Ni0.5Zn0.5Fe2O4 NPs demonstrated effective and self-controlled heating up to the certain temperatures under the effect of an alternating magnetic field in contrast to known in literature Fe3O4 NPs with the spinel structure, which heated up uncontrolled to the extremely high phase transition temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin, Magnetochemistry. 6(4), 68 (2020)

    Article  Google Scholar 

  2. Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 117(15), 10121 (2017)

    Article  Google Scholar 

  3. M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid Interface Sci. 265, 29 (2019)

    Article  Google Scholar 

  4. R. Sharma, P. Thakur, P. Sharma, V. Sharma, J. Alloys Compd. 704, 7 (2017)

    Article  Google Scholar 

  5. S. Sitthichai, C. Pilapong, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 356, 972 (2015)

    Article  ADS  Google Scholar 

  6. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Particuology 30, 1 (2017)

    Article  Google Scholar 

  7. H. Nemala, J.S. Thakur, V.M. Naik, P.P. Vaishnava, G. Lawes, R. Naik, J. Appl. Phys. 116(3), 034309 (2014)

    Article  ADS  Google Scholar 

  8. D. Chen, Q. Tang, X. Li, X. Zhou, J. Zang, W.Q. Xue, J.-Y. Xiang, C.-Q. Guo, Int. J. Nanomed. 7, 4973 (2012)

    Article  Google Scholar 

  9. K. Fujii, T. Nagasaka, M. Hino, ISIJ Int. 40(11), 1059 (2000)

    Article  Google Scholar 

  10. I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Pérez-Hernández, J. Arenas-Alatorre, Mater. Lett. 61(23–24), 4447 (2007)

    Article  Google Scholar 

  11. J. Wallyn, N. Anton, T.F. Vandamme, Pharmaceutics 11(11), 601 (2019)

    Article  Google Scholar 

  12. O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, J.M. Greneche, A.G. Belous, Solid State Phenom. 230, 108 (2015)

    Article  Google Scholar 

  13. O.V. Yelenich, S.O. Solopan, A.G. Belous, Solid State Phenom. 200, 149 (2013)

    Article  Google Scholar 

  14. A. Jordan, P. Wust, H. Fählin, W. John, A. Hinz, R. Felix, Int. J. Hyperth. 9(1), 51 (1993)

    Article  Google Scholar 

  15. D. Ortega, Q.A. Pankhurst, Nanoscience 1(60), 88 (2013)

    Google Scholar 

  16. E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Appl. Phys. Rev. 2(4), 041302 (2015)

    Article  ADS  Google Scholar 

  17. A. Hutten, D. Sudfeld, I. Ennen, G. Reiss, K. Wojczykowski, P. Jutzi, J. Magn. Magn. Mater. 293, 93 (2005)

    Article  ADS  Google Scholar 

  18. S. Woltz, R. Hiergeist, P. Görnert, C. Rüssel, J. Magn. Magn. Mater. 298(1), 7 (2006)

    Article  ADS  Google Scholar 

  19. R.A. Frimpong, J. Dou, M. Pechan, J.Z. Hilt, J. Magn. Magn. Mater. 322(3), 326 (2010)

    Article  ADS  Google Scholar 

  20. R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam, J. Mater. Chem. 21(35), 13388 (2011)

    Article  Google Scholar 

  21. Y.V. Kolenko, M. Bañobre-López, C. Rodríguez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M.F. Cerqueira, D.Y. Petrovykh, K. Kovnir, O.I. Lebedev, J. Rivas, J. Phys. Chem. C 118(16), 8691 (2014)

    Article  Google Scholar 

  22. L.B. de Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, J. Alloys Compd. 779, 698 (2019)

    Article  Google Scholar 

  23. H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, A. Khandan, J. Phys. Chem. Sol. 111, 464 (2017)

    Article  ADS  Google Scholar 

  24. X. Lu, G. Liang, Q. Sun, C. Yang, Mater. Lett. 65(4), 674 (2011)

    Article  Google Scholar 

  25. A.I. Tovstolytkin, M.M. Kulyk, V.M. Kalita, S.M. Ryabchenko, V.O. Zamorskyi, O.P. Fedorchuk, S.O. Solopan, A.G. Belous, J. Magn. Magn. Mater. 473, 422 (2019)

    Article  ADS  Google Scholar 

  26. I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324(6), 903 (2012)

    Article  ADS  Google Scholar 

  27. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Nanoscale 8(19), 10124 (2016)

    Article  ADS  Google Scholar 

  28. M.A. Dar, J. Shah, W.A. Siddiqui, R.K. Kotnala, Appl. Nanosci. 4(6), 675 (2014)

    Article  ADS  Google Scholar 

  29. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A.C. Başaran, J. Magn. Magn. Mater. 321(3), 157 (2009)

    Article  ADS  Google Scholar 

  30. H.E. Zhang, B.F. Zhang, G.F. Wang, X.H. Dong, Y. Gao, J. Magn. Magn. Mater. 312(1), 126 (2007)

    Article  ADS  Google Scholar 

  31. A. Vedrtnam, K. Kalauni, S. Dubey, A. Kumar, A.I.M.S. Mater, Sci. 7(6), 800 (2020)

    Google Scholar 

  32. I.C. Madsen, N.V.Y. Scarlett, A. Kern, Z. Kristallogr. 226, 944 (2011)

    Article  Google Scholar 

  33. U. Holzwarth, N. Gibson, Nat. Nanotech. 6, 534 (2011)

    Article  ADS  Google Scholar 

  34. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Sol. State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  35. M. Veverka, K. Zaveta, O. Kaman, P. Veverka, K. Knizek, E. Pollert, M. Burian, P. Kaspar, J. Phys, D Appl. Phys. 47, 065503 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NAS of Ukraine in the framework of Target Program of Scientific Researches of the NAS of Ukraine “Grants of the NAS of Ukraine to research laboratories/groups of young scientists of the NAS of Ukraine” No 0121U110363 (2021–2022), common Ukrainian-Slovak joint research project. This work was also supported by the Slovak Academy of Sciences and Ministry of Education in the framework of project VEGA 2/0011/20, Slovak Research and Development Agency under the Contract No. APVV-18-0160. The authors acknowledge the CERIC-ERIC Consortium in the frame of Grant No 20197154 and the Romanian Ministry of Research and Innovation (from FEDR-POC No. 332/390008/29.12.2020—SMIS 109522) for the access to experimental facilities and possibility to perform HR TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shlapa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashkov, I., Shlapa, Y., Maraloiu, V.A. et al. Properties of Ni0.5Zn0.5Fe2O4 nanoparticles with the spinel structure synthesized via cryo-chemical method. Appl. Phys. A 127, 650 (2021). https://doi.org/10.1007/s00339-021-04795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04795-0

Keywords

Navigation