Skip to main content

Advertisement

Log in

Superconducting ScP4 with a novel phosphorus framework

  • T.C. : Materials by Design Under Pressure: experiments and theory
  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 04 April 2022

This article has been updated

Abstract

Pressure has become an irreplaceable tool in preparing new materials with interesting property. Theoretical calculations, especially combined with structural evolution algorithm, have played a powerful role in accelerating the finding of functional materials. Phosphorus (P) has the ability of forming diverse motifs in element solids and compounds, which are closely related to their physical property. Here we explore high-pressure phase diagram of binary Sc-P compounds with the aim of finding new materials through first-principles structural search calculations. Besides reappearing the known NaCl-type ScP, two P-rich chemical compositions (e.g., ScP4 and ScP2) are identified at high pressures. Interestingly, ScP4 contains a novel three-dimensional P framework composed of eight- and four-membered channels. A one-dimensional Sc chain is located in eight-membered channel. Electronic property calculations disclose that ScP4 is metallic and superconductive. Its superconducting transition temperature (Tc) increases with decreasing pressure, and is up to 11 K at 50 GPa. Pressure-dependent density of states at the Fermi level is mainly responsible for the change of Tc. Other pressure-induced Sc-P phases are also superconductive, but have a weak electron–phonon coupling in comparison with ScP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. H.-K. Mao, X.-J. Chen, Y. Ding, B. Li, L. Wang, Rev. Mod. Phys. 90, 15007 (2018)

    Article  Google Scholar 

  2. J.A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Phys. Rep. 856, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  4. H. Liu, I.I. Naumov, R. Hoffmann, N.W. Ashcroft, R.J. Hemley, Proc. Natl. Acad. Sci. 114, 6990 (2017)

    Article  ADS  Google Scholar 

  5. F. Peng, Y. Sun, C.J. Pickard, R.J. Needs, Q. Wu, Y. Ma, Phys. Rev. Lett. 119, 107001 (2017)

    Article  ADS  Google Scholar 

  6. H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, T. Cui, Phys. Rev. Lett. 125, 217001 (2020)

    Article  ADS  Google Scholar 

  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  8. Y. Liang, M. Xu, Z. Qu, S. Lin, J. Hao, Y. Li, J. Mater. Chem. C 9, 8258 (2021)

    Article  Google Scholar 

  9. P.E.M. Amaral, H.-F. Ji, in fundamentals and applications of phosphorus nanomaterials. ed. by H.F. Ji (American Chemical Society, Washington, DC, 2019), pp. 2–27

    Google Scholar 

  10. X. Li, X. Zhang, A. Bergara, G. Gao, Y. Liu, G. Yang, Phys. Rev. B 105, 24504 (2022)

    Article  ADS  Google Scholar 

  11. X. Liu, Z. Yu, Q. Liang, C. Zhou, H. Wang, J. Zhao, X. Wang, N. Yu, Z. Zou, Y. Guo, Chem. Mater. 32, 8781 (2020)

    Article  Google Scholar 

  12. Y. Liu, C. Wang, X. Kong, D. Duan, Inorg. Chem. 56, 12529 (2017)

    Article  Google Scholar 

  13. Y. Liu, C. Wang, P. Lv, H. Sun, D. Duan, Chem. A Eur. J. 24, 11402 (2018)

    Article  Google Scholar 

  14. P. Tsuppayakorn-aek, W. Luo, W. Pungtrakoon, K. Chuenkingkeaw, T. Kaewmaraya, R. Ahuja, T. Bovornratanaraks, J. Appl. Phys. 124, 225901 (2018)

    Article  ADS  Google Scholar 

  15. J.J. Hamlin, J.S. Schilling, Phys. Rev. B 76, 12505 (2007)

    Article  ADS  Google Scholar 

  16. N.H. Krikorian, A.L. Giorgi, E.G. Szklarz, M.C. Krupka, B.T. Matthias, J. Less Common Met. 19, 253 (1969)

    Article  Google Scholar 

  17. H. Ninomiya, K. Oka, I. Hase, K. Kawashima, H. Fujihisa, Y. Gotoh, S. Ishida, H. Ogino, A. Iyo, Y. Yoshida, H. Eisaki, Inorg. Chem. 58, 15629 (2019)

    Article  Google Scholar 

  18. H. Chen, M. Zheng, A. Fang, J. Yang, F. Huang, X. Xie, M. Jiang, J. Solid State Chem. 194, 59 (2012)

    Article  ADS  Google Scholar 

  19. D. Shrivastava, S.P. Sanyal, Comput. Condens. Matter 21, e00418 (2019)

    Article  Google Scholar 

  20. Y.-K. Wei, J.-N. Yuan, F.I. Khan, G.-F. Ji, Z.-W. Gu, D.-Q. Wei, RSC Adv. 6, 81534 (2016)

    Article  ADS  Google Scholar 

  21. X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, N.W. Ashcroft, J. Phys. Chem. C 122, 6298 (2018)

    Article  Google Scholar 

  22. S. Qian, X. Sheng, X. Yan, Y. Chen, B. Song, Phys. Rev. B 96, 94513 (2017)

    Article  ADS  Google Scholar 

  23. M. Miao, Nat. Chem. 5, 846 (2013)

    Article  Google Scholar 

  24. M. Miao, Y. Sun, E. Zurek, H. Lin, Nat. Rev. Chem. 4, 508 (2020)

    Article  Google Scholar 

  25. L. Zhang, Y. Wang, J. Lv, Y. Ma, Nat. Rev. Mater. 2, 17005 (2017)

    Article  ADS  Google Scholar 

  26. M. Zhang, H. Liu, Q. Li, B. Gao, Y. Wang, H. Li, C. Chen, Y. Ma, Phys. Rev. Lett. 114, 15502 (2015)

    Article  ADS  Google Scholar 

  27. Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L.-M. Wang, B. Wen, J. He, Z. Liu, Nature 493, 385 (2013)

    Article  ADS  Google Scholar 

  28. Z. Weiwei, A.R. Oganov, A.F. Goncharov, Z. Qiang, B.S. Eddine, A.O. Lyakhov, S. Elissaios, S. Maddury, V.B. Prakapenka, K. Zuzana, Science(80-). 342, 1502 (2013)

    ADS  Google Scholar 

  29. A.B. Altman, A.D. Tamerius, N.Z. Koocher, Y. Meng, C.J. Pickard, J.P.S. Walsh, J.M. Rondinelli, S.D. Jacobsen, D.E. Freedman, J. Am. Chem. Soc. 143, 214 (2021)

    Article  Google Scholar 

  30. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. Mao, R.J. Hemley, Nat. Mater. 3, 294 (2004)

    Article  ADS  Google Scholar 

  31. Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82, 94116 (2010)

    Article  ADS  Google Scholar 

  32. Y. Wang, J. Lv, L. Zhu, Y. Ma, Comput. Phys. Commun. 183, 2063 (2012)

    Article  ADS  Google Scholar 

  33. C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175, 713 (2006)

    Article  ADS  Google Scholar 

  34. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013)

    Article  ADS  Google Scholar 

  35. L. Tang, Y.-B. He, C. Wang, S. Wang, M. Wagemaker, B. Li, Q.-H. Yang, F. Kang, Adv. Sci. 4, 1600311 (2017)

    Article  Google Scholar 

  36. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  37. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  38. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  39. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  40. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  41. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  42. J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977)

    Article  ADS  Google Scholar 

  43. K. Parlinski, Z.Q. Li, Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)

    Article  ADS  Google Scholar 

  44. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    Article  ADS  Google Scholar 

  45. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  46. A. Savin, R. Nesper, S. Wengert, T.F. Fässler, Angew. Chemie Int. Ed. English 36, 1808 (1997)

    Article  Google Scholar 

  47. E. Parthé, E. Parthé, Acta Crystallogr. 16, 71 (1963)

    Article  Google Scholar 

  48. F.H. Spedding, J.J. Hanak, A.H. Daane, J. Less Common Met. 3, 110 (1961)

    Article  Google Scholar 

  49. Y. Akahama, H. Fujihisa, H. Kawamura, Phys. Rev. Lett. 94, 195503 (2005)

    Article  ADS  Google Scholar 

  50. R. Hultgren, N.S. Gingrich, B.E. Warren, J. Chem. Phys. 3, 351 (1935)

    Article  ADS  Google Scholar 

  51. A. Brown, S. Rundqvist, Acta Crystallogr. 19, 684 (1965)

    Article  Google Scholar 

  52. H. Katzke, P. Tolédano, Phys. Rev. B 77, 24109 (2008)

    Article  ADS  Google Scholar 

  53. Y. Akahama, H. Kawamura, S. Carlson, T. Le Bihan, D. Häusermann, Phys. Rev. B 61, 3139 (2000)

    Article  ADS  Google Scholar 

  54. Y. Akahama, M. Kobayashi, H. Kawamura, Phys. Rev. B 59, 8520 (1999)

    Article  ADS  Google Scholar 

  55. A. Maachou, B. Amrani, M. Driz, Phys. B Condens. Matter 388, 384 (2007)

    Article  ADS  Google Scholar 

  56. P. Pandit, B. Rakshit, S.P. Sanyal, Phys. Status Solidi 248, 921 (2011)

    Article  Google Scholar 

  57. H. Luo, R.G. Greene, A.L. Ruoff, Phys. Rev. Lett. 71, 2943 (1993)

    Article  ADS  Google Scholar 

  58. O. Degtyareva, E. Gregoryanz, M. Somayazulu, H. Mao, R.J. Hemley, Phys. Rev. B 71, 214104 (2005)

    Article  ADS  Google Scholar 

  59. A. Iandelli, E. Franceschi, J. Less Common Met. 30, 211 (1973)

    Article  Google Scholar 

  60. Z.S. Pereira, G.M. Faccin, E.Z. da Silva, J. Phys. Chem. C 125, 8899 (2021)

    Article  Google Scholar 

  61. H. Tajima, Y. Yerin, A. Perali, P. Pieri, Phys. Rev. B 99, 180503 (2019)

    Article  ADS  Google Scholar 

  62. X. Ma, D. Zhou, Y. Yan, J. Xu, S. Liu, Y. Wang, M. Cui, Y. Cheng, Y. Miao, Y. Liu, Phys. Chem. Chem. Phys. 21, 21262 (2019)

    Article  Google Scholar 

  63. P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975)

    Article  ADS  Google Scholar 

  64. S. Di Cataldo, C. Heil, W. von der Linden, L. Boeri, Phys. Rev. B 104, L020511 (2021)

    Article  Google Scholar 

  65. Z. Liu, W. Wu, Z. Zhao, H. Zhao, J. Cui, P. Shan, J. Zhang, C. Yang, P. Sun, Y. Wei, S. Li, J. Zhao, Y. Sui, J. Cheng, L. Lu, J. Luo, G. Liu, Phys. Rev. B 99, 184509 (2019)

    Article  ADS  Google Scholar 

  66. J.-G. Cheng, K. Matsubayashi, W. Wu, J.P. Sun, F.K. Lin, J.L. Luo, Y. Uwatoko, Phys. Rev. Lett. 114, 117001 (2015)

    Article  ADS  Google Scholar 

  67. Y. Li, Y. Zhou, Z. Guo, F. Han, X. Chen, P. Lu, X. Wang, C. An, Y. Zhou, J. Xing, G. Du, X. Zhu, H. Yang, J. Sun, Z. Yang, W. Yang, H.-K. Mao, Y. Zhang, H.-H. Wen, Npj Quantum Mater. 2, 66 (2017)

    Article  ADS  Google Scholar 

  68. Z. Chi, X. Chen, C. An, L. Yang, J. Zhao, Z. Feng, Y. Zhou, Y. Zhou, C. Gu, B. Zhang, Y. Yuan, C. Kenney-Benson, W. Yang, G. Wu, X. Wan, Y. Shi, X. Yang, Z. Yang, Npj Quantum Mater. 3, 28 (2018)

    Article  ADS  Google Scholar 

  69. A.R. Moodenbaugh, D.C. Johnston, R. Viswanathan, R.N. Shelton, L.E. DeLong, W.A. Fertig, J. Low Temp. Phys. 33, 175 (1978)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Natural Science Foundation of China under numbers 21873017 and 21573037, the Postdoctoral Science Foundation of China under Grant 2013M541283, the Natural Science Foundation of Hebei Province (A2019203507 and B2021203030), and the Natural Science Foundation of Jilin Province (20190201231JC). The work was carried out at the National Supercomputer Center in Tianjin using TianHe-1 (A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Li or Shiliang Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Consent for publication

The authors know and agree to submit this manuscript to Applied Physics A.

Human or Animal Rights

The authors guarantee that research does not involve human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Li, F., Zhang, X. et al. Superconducting ScP4 with a novel phosphorus framework. Appl. Phys. A 128, 318 (2022). https://doi.org/10.1007/s00339-022-05341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05341-2

Keywords

Navigation