Skip to main content
Log in

Induced quantum-Fano effect by Raman scattering and its correlation with field emission properties of silicon nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we report the effect of crystal size and aspect ratio on field emission (FE) properties of silicon nanowire (Si-NWs) fabricated onto n-type Si (100) using metal-induced chemical etching (MIE) technique. The optical band gap calculation from the diffuse reflection spectra reveals the decrement in the band gap of Si-NWs from 1.98 to 1.69 eV. Here, band gap-dependent hyperbolic band model has been used to estimate the crystal size present in Si-NWs, which shows the quantum confinement (QC) effect. XPS studies indicate that the samples clearly exhibit the presence of oxidation state of Si (0) in Si-NWs. Long-range order Raman scattering has been analyzed for confirmation of quantum-Fano effect presence in Si-NWs due to red shift and asymmetry behavior of Raman band, which has been observed from Si-NWs as compared to its bulk counterpart. Moreover, a theoretical Raman line fitting model has been used to estimate the crystal size present in Si-NWs. The electron field emission properties of Si-NWs have been studied using current–voltage (IV) measurements followed by a theoretical analysis through the Fowler–Nordheim (F–N) equation as a function of the crystal size. The electron field emission studies show the smaller crystal size has a lower turn-on voltage. Moreover, it has been found that the aspect ratio of Si-NWs linearly varies with the field enhancement factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Lajvardi, H. Eshghi, M.E. Ghazi, M. Izadifard, A. Goodarzi, Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater. Sci. Semicond. Process. 40, 556–563 (2015)

    Article  Google Scholar 

  2. M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires. Nanomaterials 10(3), 404 (2020)

    Article  Google Scholar 

  3. V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A.K. Shukla, R. Kumar, Silicon nanowires prepared by metal induced etching (MIE): good field emitters. RSC Adv. 4(101), 57799–57803 (2014)

    Article  ADS  Google Scholar 

  4. Z.Q. Liu, Z.W. Pan, L.F. Sun, D.S. Tang, W.Y. Zhou, G. Wang, S.S. Xie, Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate. J. Phys. Chem. Solids 61(7), 1171–1174 (2000)

    Article  ADS  Google Scholar 

  5. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)

    Article  ADS  Google Scholar 

  6. S.Q. Feng, D.P. Yu, H.Z. Zhang, Z.G. Bai, Y. Ding, The growth mechanism of silicon nanowires and their quantum confinement effect. J. Cryst. Growth 209(2–3), 513–517 (2000)

    Article  ADS  Google Scholar 

  7. Q. Peng, Z. Huang, J. Zhu, Fabrication of large-area silicon nanowire p–n junction diode arrays. Adv. Mater. 16(1), 73–76 (2004)

    Article  Google Scholar 

  8. A.R. Wagner, S.W. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    Article  ADS  Google Scholar 

  9. Y. Chen, B. Peng, B. Wang, Raman spectra and temperature-dependent Raman scattering of silicon nanowires. J. Phys. Chem. C 111(16), 5855–5858 (2007)

    Article  Google Scholar 

  10. V. Kashyap, C. Kumar, N. Chaudhary, N. Goyal, K. Saxena, Opt. Mater. 121, 111538 (2021)

    Article  Google Scholar 

  11. R. Kumar, G. Sahu, S.K. Saxena, H.M. Rai, P.R. Sagdeo, Qualitative evolution of asymmetric Raman line-shape for nanostructures. SILICON 6(2), 117–121 (2014)

    Article  Google Scholar 

  12. S.K. Saxena, P. Yogi, S. Mishra, H.M. Rai, V. Mishra, M.K. Warshi, R. Kumar, Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Phys. Chem. Chem. Phys. 19(47), 31788–31795 (2017)

    Article  Google Scholar 

  13. J.M. Bonard, C. Klinke, K.A. Dean, B.F. Coll, Degradation and failure of carbon nanotube field emitters. Phys. Rev. B 67(11), 115406 (2003)

    Article  ADS  Google Scholar 

  14. C. Hernandez-Garcia, P.G. O Shea, M.L. Stutzman, Electron sources for accelerators. Phys. Today 61(2), 44 (2008)

    Article  Google Scholar 

  15. S. Lv, Z. Li, J. Liao, G. Wang, M. Li, W. Miao, Optimizing field emission properties of the hybrid structures of graphene stretched on patterned and size-controllable SiNWs. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  16. X. Qian, H. Liu, Y. Guo, Y. Song, Y. Li, Effect of aspect ratio on field emission properties of ZnO nanorod arrays. Nanoscale Res. Lett. 3(8), 303–307 (2008)

    Article  ADS  Google Scholar 

  17. V.S. Kale, R.R. Prabhakar, S.S. Pramana, M. Rao, C.H. Sow, K.B. Jinesh, S.G. Mhaisalkar, Enhanced electron field emission properties of high aspect ratio silicon nanowire–zinc oxide core–shell arrays. Phys. Chem. Chem. Phys. 14(13), 4614–4619 (2012)

    Article  Google Scholar 

  18. V. Kashyap, C. Kumar, N. Chaudhary, K. Saxena, Mater. Lett. 314, 131842 (2022)

    Article  Google Scholar 

  19. F.C. Au, K.W. Wong, Y.H. Tang, Y.F. Zhang, I. Bello, S.T. Lee, Electron field emission from silicon nanowires. Appl. Phys. Lett. 75(12), 1700–1702 (1999)

    Article  ADS  Google Scholar 

  20. C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, X. Zhao, Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays. Physica E 30(1–2), 169–173 (2005)

    Article  ADS  Google Scholar 

  21. Z.R. Smith, R.L. Smith, S.D. Collins, Mechanism of nanowire formation in metal assisted chemical etching. Electrochim. Acta 92, 139–147 (2013)

    Article  Google Scholar 

  22. V. Kashyap, C. Kumar, N. Chaudhary, N. Goyal, K. Saxena, The correlation of resistivity with the crystal size present in silicon nanowires through confinement based models. Mater. Lett. 301, 130312 (2021)

    Article  Google Scholar 

  23. R. Venkatesan, J. Mayandi, J.M. Pearce, V. Venkatachalapathy, Influence of metal assisted chemical etching time period on mesoporous structure in as-cut upgraded metallurgical grade silicon for solar cell application. J. Mater. Sci. Mater. Electron. 30(9), 8676–8685 (2019)

    Article  Google Scholar 

  24. R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, A. La Magna, Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm. ACS Omega 4(19), 17967–17971 (2019)

    Article  Google Scholar 

  25. F. Rodríguez-Mas, J.C. Ferrer, J.L. Alonso, D. Valiente, S. Fernández de Ávila, A comparative study of theoretical methods to estimate semiconductor nanoparticles’ size. Curr. Comput.-Aided Drug Des. 10(3), 226 (2020)

    Google Scholar 

  26. M. Becker, F. Michel, A. Polity, P.J. Klar, Impact of composition x on the refractive index of NixO. Phys. Status Solidi (B) 255(3), 1700463 (2018)

    Article  ADS  Google Scholar 

  27. R.A. Ismail, Effect of etching time on the characteristics of low resistivity porous Si devices. Mod. Phys. Lett. B 27(30), 1350217 (2013)

    Article  ADS  Google Scholar 

  28. R. Bhujel, U. Rizal, A. Agarwal, B.S. Swain, B.P. Swain, Synthesis and characterization of silicon nanowires by electroless etching. J. Mater. Eng. Perform. 27(6), 2655–2660 (2018)

    Article  Google Scholar 

  29. M.F. Beaux II., N.J. Bridges, M. De Hart, T.E. Bitterwolf, D.N. McIlroy, X-ray photoelectron spectroscopic analysis of the surface chemistry of silica nanowires. Appl. Surf. Sci. 257(13), 5766–5771 (2011)

    Article  ADS  Google Scholar 

  30. M. Gao, H.W. Du, J. Yang, L. Zhao, J. Xu, Z.Q. Ma, Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system. Chinese Phys. B 26(4), 045201 (2017)

    Article  ADS  Google Scholar 

  31. Radzi, M., Safwan, A. A., Yarmo, M. A., Rusop, M., & Abdullah, S. Surface morphology and Si 2p binding energy investigation of multilayer porous silicon nanostructure. In Advanced Materials Research (Vol. 620, pp. 17–21). (2013)

  32. M.Y. Bashouti, K. Sardashti, J. Ristein, S.H. Christiansen, Early stages of oxide growth in H-terminated silicon nanowires: determination of kinetic behavior and activation energy. Phys. Chem. Chem. Phys. 14(34), 11877–11881 (2012)

    Article  Google Scholar 

  33. X. Chen, Q. Bi, M. Sajjad, X. Wang, Y. Ren, X. Zhou, Z. Liu, One-dimensional porous silicon nanowires with large surface area for fast charge–discharge lithium-ion batteries. Nanomaterials 8(5), 285 (2018)

    Article  Google Scholar 

  34. R. Kumar, Asymmetry to symmetry transition of Fano line-shape: analytical description. Indian J. Phys. 87(1), 49–52 (2013)

    Article  ADS  Google Scholar 

  35. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  36. P. Yogi, S.K. Saxena, S. Mishra, H.M. Rai, R. Late, V. Kumar, R. Kumar, Interplay between phonon confinement and Fano effect on Raman line shape for semiconductor nanostructures: analytical study. Solid State Commun. 230, 25–29 (2016)

    Article  ADS  Google Scholar 

  37. P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, R. Kumar, Fano scattering: manifestation of acoustic phonons at the nanoscale. J. Phys. Chem. Lett. 7(24), 5291–5296 (2016)

    Article  Google Scholar 

  38. P. Patra, R. Kumar, C. Kumar, P.K. Mahato, Ni-incorporated cadmium sulphide quantum dots for solar cell: an evolution to microstructural and linear-nonlinear optical properties. J. Crystal Growth 2022, 126542 (2022)

    Article  Google Scholar 

  39. R.P. Wang, G.W. Zhou, Y.L. Liu, S.H. Pan, H.Z. Zhang, D.P. Yu, Z. Zhang, Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys. Rev. B 61(24), 16827 (2000)

    Article  ADS  Google Scholar 

  40. F. Zhao, G.A. Cheng, R.T. Zheng, D.D. Zhao, S.L. Wu, J.H. Deng, Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires. Nanoscale Res. Lett. 6(1), 1–5 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

Vikas kashyap acknowledges financial support as SRF from University Grant Commission (UGC) India. He also acknowledges the sophisticated Sophisticated Analytical Instrumentation Facility (SAIF) and Prof. Ghan Shyam Singh Saini (Department of Physics, Panjab University Chandigarh) for using and recording the Raman Spectroscopy facility of their lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Saxena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, V., Kumar, C., Kumar, V. et al. Induced quantum-Fano effect by Raman scattering and its correlation with field emission properties of silicon nanowires. Appl. Phys. A 128, 312 (2022). https://doi.org/10.1007/s00339-022-05415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05415-1

Keywords

Navigation