Skip to main content

Advertisement

Log in

Synthesis, thermal, optical, mechanical and radiation-attenuation characteristics of borate glass system modified by Bi2O3/MgO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper provides in-depth experimental validations on the synthesis, optical, thermal, mechanical, and radiation-shielding properties of a novel xBi2O3–10MgO–(90-x)B2O3, where 20 ≤ x ≤ 40 mol %, glass system. The melt quench process is used to prepare all the samples of this glass system, and the amorphous phase is conformed using an X-ray diffraction test. The structure of all the produced glasses is investigated using differential scanning calorimetry investigations. Moreover, we use Makishima–Mackenzie model to compute the elastic moduli, while the FLUKA simulations are employed to assess the radiation-shielding properties of our glass system. Finally, we compared the obtained results of our new glass system with those of standard and previously published glass systems. The obtained results indicated that the crystallization resistance and mechanical qualities of the glass were enhanced as Bi2O3 content increased. Moreover, the linear attenuation factors for the prepare glasses were maximum at 0.1 MeV with the values of 0.1838 cm−1, 0.1946 cm−1, 0.2050 cm−1, 0.2149 cm−1and 0.2220 cm−1 as Bi2O3 content increased from 20 to 40 mol %, respectively. Generally, our prepared glasses show promising properties for optical and radiation applications, especially in medical facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.A. Saudi, W.M. Abd-Allah, Structural, physical and radiation attenuation properties of tungsten doped zinc borate glasses. J. Alloys Compd. 860, 158225 (2021). https://doi.org/10.1016/j.jallcom.2020.158225

    Article  Google Scholar 

  2. Z.M.H. El-Qahtani, E.R. Shaaban, M.M. Soraya, Attenuation characteristics of high-energy radiation on As–Se–Sn chalcogenide glassy alloy. Chalcogenide Lett. 18(6), 311–326 (2021)

    Google Scholar 

  3. B. Alshahrani, C. Eke, Z.A. Alrowaili, A.M. Al-Baradi, H.I. Alsaeedy, C. Mutuwong, B.T. Tonguc, M.S. Al-Buriahi, Gamma, neutron, and charged-particles shielding properties of tellurite glass system containing Sb2O3 and V2O5. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-07204-7

    Article  Google Scholar 

  4. C. Eke, Radiation attenuation properties of B2O3–ZnO–Al2O3–Bi2O3–Sm2O3 glasses. Radiochim. Acta (2021). https://doi.org/10.1515/ract-2021-1072

    Article  Google Scholar 

  5. M.S. Al-Buriahi, H.H. Hegazy, F. Alresheedi, H.H. Somaily, C. Sriwunkum, I.O. Olarinoye, Effect of Sb2O3 addition on radiation attenuation properties of tellurite glasses containing V2O5 and Nb2O5. Appl. Phys. A 127, 106 (2021). https://doi.org/10.1007/s00339-020-04265-z

    Article  ADS  Google Scholar 

  6. K.C. Sekhar, N. Narsimlu, M.S. Al-Buriahi, H.A. Yakout, I.O. Olarinoye, S. Alomairy, Md. Sharaeefuddin, Synthesis, optical, and radiation attenuation properties of CaF2–TeO2–Na2B4O7–CuO glass system for advanced shielding applications. Eur. Phys. J. Plus 136, 903 (2021). https://doi.org/10.1140/epjp/s13360-021-01906-x

    Article  Google Scholar 

  7. A.M. Madbouly, H.A. Alazab, E. Borham, F.M. Ezz-Eldin, Study of gamma radiation dosimeter and radiation shielding parameters of commercial window glass. Appl. Phys. A 127, 761 (2021). https://doi.org/10.1007/s00339-021-04889-9

    Article  ADS  Google Scholar 

  8. S.J. Talley, T. Robinson, A.M. Long, S.Y. Lee, Z. Brounstein, K.S. Lee, D. Geller, E. Lum, A. Labouriau, Flexible 3D printed silicones for gamma and neutron radiation shielding. Radiat. Phys. Chem. 188, 109616 (2021). https://doi.org/10.1016/j.radphyschem.2021.109616

    Article  Google Scholar 

  9. B. Alshahrani, I.O. Olarinoye, C. Mutuwong, C. Sriwunkum, H.A. Yakout, H.O. Tekin, M.S. Al-Buriahi, Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 183, 109386 (2021). https://doi.org/10.1016/j.radphyschem.2021.109386

    Article  Google Scholar 

  10. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M.S. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021)

    Article  Google Scholar 

  11. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications. Polym. Adv. Technol. 32(6), 2386–2396 (2021). https://doi.org/10.1002/pat.5267

    Article  Google Scholar 

  12. N. Nagaraja, H.C. Manjunatha, L. Seenappa, K.N. Sridhar, H.B. Ramalingam, Radiation shielding properties of silicon polymers. Radiat. Phys. Chem. 171, 108723 (2020). https://doi.org/10.1016/j.radphyschem.2020.108723

    Article  Google Scholar 

  13. A. Saeed, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks. Radiat. Phys. Chem. 184, 109454 (2021). https://doi.org/10.1016/j.radphyschem.2021.109454

    Article  Google Scholar 

  14. H.S. Alorfi, M.A. Hussein, S.A. Tijani, The use of rocks in lieu of bricks and concrete as radiation shielding barriers at low gamma and nuclear medicine energies. Constr. Build. Mater. 251, 118908 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118908

    Article  Google Scholar 

  15. H.M. Saleh, I.I. Bondouk, E. Salama, H.A. Esawii, Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material. Prog. Nucl. Energy 137, 103764 (2021). https://doi.org/10.1016/j.pnucene.2021.103764

    Article  Google Scholar 

  16. C. Ipbuker, H. Nulk, V. Gulik, Biland, A.H. Tkaczyk, Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications. Nucl. Eng. Des. 284, 27–37 (2015). https://doi.org/10.1016/j.nucengdes.2014.12.007

    Article  Google Scholar 

  17. C. Eke, Investigation of gamma-ray attenuation properties of beach sand samples from Antalya, Turkey. Arab. J. Geosci. 14(3), 159 (2021). https://doi.org/10.1007/s12517-020-06413-4

    Article  MathSciNet  Google Scholar 

  18. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46(11), 19078–19083 (2020)

    Article  Google Scholar 

  19. N. Alfryyan, Z.A. Alrowaili, H.H. Somaily, I.O. Olarinoye, N. Alwadai, C. Mutuwong, M.S. Al-Buriahi, Comparison of radiation shielding and elastic properties of germinate tellurite glasses with the addition of Ga2O3. J. Taibah Univ. Sci. 16(1), 183–192 (2022)

    Article  Google Scholar 

  20. A. Alalawi, C. Eke, S. Alomairy, O. Alsalmi, C. Sriwunkum, Z. A. Alrowaili, M. S. Al-Buriahi. Attenuation properties and radiation protection efficiency of Tb2O3–La2O3–P2O5 glass system. J. Aust. Ceram. Soc. 1–9 (2022)

  21. N. Alfryyan, C. Eke, Z.M.M. Mahmoud, Z.A. Alrowaili, M.S. Al-Buriahi, Nuclear shielding characteristics of Sm3+ doped borosilicate glasses containing Na2O, PbO and ZnO. Radiat. Phys. Chem. 194, 110044 (2022)

    Article  Google Scholar 

  22. M. S. Al-Buriahi, Z. A. Alrowaili, C. Eke, S. Alomairy, B. Alshahrani, I. Bejaoui, C. Sriwunkum. An important role of Ba2+, Sr2+, Mg2+, and Zn2+ in the radiation attenuation performance of CFCBPC bioactive glasses. J. Aust. Ceram. Soc. 1–13 (2022)

  23. K.S. Shaaban, B.M. Alotaibi, N. Alharbi, Z.A. Alrowaili, M.S. Al-Buriahi, S.A. Makhlouf, A.F. Abd El-Rehim, Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiat. Phys. Chem. 193, 109995 (2022)

    Article  Google Scholar 

  24. M.S. Al-Buriahi, N. Tamam, H.H. Somaily, Z.A. Alrowaili, H.H. Saleh, I.O. Olarinoye, N. Alwadai, C. Mutuwong, B.T. Tonguc, Estimation of radiation protection ability of borate glass system doped with CdO, PbO, and TeO2. Radiat. Phys. Chem. 193, 109996 (2022)

    Article  Google Scholar 

  25. N. Tamam, Z.A. Alrowaili, Z.M. Elqahtani, H.H. Somaily, N. Alwadai, C. Sriwunkum, I.O. Olarinoye, M.S. Al-Buriahi, Significant influence of Cu content on the radiation shielding properties of Ge–Se–Te bulk glasses. Radiat. Phys. Chem. 193, 109981 (2022)

    Article  Google Scholar 

  26. M.S. Al-Buriahi, Z.A. Alrowaili, I. Kebaili, A.M. Al-Baradi, E.A. Abdel Wahab, I.O. Olarinoye, C. Sriwunkum, K.S. Shaaban, Study of the influence of MoO3 concentration on the chemical structure, physical properties, and radiation absorption prowess of alumino lead borate glasses. Phys. Scr. 96(12), 125325 (2021)

    Article  ADS  Google Scholar 

  27. Z.A. Alrowaili, A.M. Ali, A.M. Al-Baradi, M.S. Al-Buriahi, E.A. Wahab, K.S. Shaaban, A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt. Quantum Electron. 54(2), 1–19 (2022)

    Google Scholar 

  28. B. Wunderlich, Thermal Analysis (Academic Press, New York, 1990), p. 102

    Google Scholar 

  29. S. Bale, M. Purnima, C. Srinivasu, S. Rahman, Vibrational spectra and structure of bismuth based quaternary glasses. J. Alloys Compd. 457(1–2), 545–548 (2008)

    Article  Google Scholar 

  30. M. Subhadra, P. Kistaiah, Effect of Bi2O3 content on physical and optical properties of 15Li2O–15K2O–xBi2O3–(65–x) B2O3: 5V2O5 glass system. Phys. B 406(8), 1501–1505 (2011)

    Article  ADS  Google Scholar 

  31. N.J. Kim, Y.H. La, S. HyeokIm, W.-T. Han, B.K. Ryu, Effect of ZnO on physical and optical properties of bismuth borate glasses. Electron. Mater. Lett. 5(4), 209–212 (2009)

    Article  Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  33. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972)

    Article  ADS  Google Scholar 

  34. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    Article  ADS  Google Scholar 

  35. A. Edukondalu, V. Sathe, S. Rahman, K. Siva Kumar, Thermal, mechanical and Raman studies on mixed alkali borotungstate glasses. Phys. B Condens. Matter 438, 120–126 (2014)

    Article  ADS  Google Scholar 

  36. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  ADS  Google Scholar 

  37. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 17(2), 147–157 (1975)

    Article  ADS  Google Scholar 

  38. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021)

    Article  ADS  Google Scholar 

  39. M.S. Al-Buriahi, D.K. Gaikwad, H.H. Hegazy, C. Sriwunkum, R. Neffati, Fe-based alloys and their shielding properties against directly and indirectly ionizing radiation by using FLUKA simulations. Phys. Scr. 96(4), 045303 (2021)

    Article  ADS  Google Scholar 

  40. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020)

    Article  Google Scholar 

  41. K.W. Fornalski, Theoretical estimation of the increase in the photoelectric effectcross section of the X-ray interaction with charged graphene. Eur. Phys. J. Plus 134, 305 (2019). https://doi.org/10.1140/epjp/i2019-12693-y

    Article  Google Scholar 

  42. A. Tasnim, M. Hossain Sahadath, M.N.I. Khan, Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties. Radiat. Phys. Chem. 189, 109772 (2021). https://doi.org/10.1016/j.radphyschem.2021.109772

    Article  Google Scholar 

  43. M.S. Al-Buriahi, C. Eke, S. Alomairy, C. Mutuwong, N. Sfina, Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses. J. Mater. Sci. Mater. Electron. 32, 13906–13916 (2021). https://doi.org/10.1007/s10854-021-05966-8

    Article  Google Scholar 

  44. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2–Ag2O–WO3 glasses. Ceram. Int. 46(10), 15464–15472 (2020)

    Article  Google Scholar 

  45. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, A. Alalawi, A.S. Abouhaswa, B. Tonguc, Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram. Int. 46(15), 24435–24442 (2020)

    Article  Google Scholar 

  46. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy. 24(17), 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  47. M.S. Al-Buriahi, C. Sriwunkum, I. Boukhris, X- and gamma-rays attenuation properties of DNA nucleobases by using FLUKA simulation code. Eur. Phys. J. Plus. 136, 776 (2021). https://doi.org/10.1140/epjp/s13360-021-01755-8

    Article  Google Scholar 

  48. Y.S. Rammah et al., Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nucl. Eng. Technol. 53(1), 282–293 (2021). https://doi.org/10.1016/j.net.2020.06.034

    Article  Google Scholar 

  49. I.O. Olarinoye et al., The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation. Ceram. Int. 46(18), 29191–29198 (2020). https://doi.org/10.1016/j.ceramint.2020.08.092

    Article  Google Scholar 

  50. H.H. Hegazy et al., Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: theoretical and simulation studies. Ceram. Int. 47(2), 2772–2780 (2021). https://doi.org/10.1016/j.ceramint.2020.09.131

    Article  Google Scholar 

  51. M.S. Al-Buriahi et al., Newly developed glasses containing Si/Cd/Li/Gd and their high performance for radiation applications: role of Er2O3. J. Mater. Sci. Mater. Electron. 32, 9440–9451 (2021). https://doi.org/10.1007/s10854-021-05608-z

    Article  Google Scholar 

  52. O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46(2), 1323–1333 (2020). https://doi.org/10.1016/j.ceramint.2019.09.095

    Article  Google Scholar 

  53. Y. Al-Hadeethi, M.I. Sayyed, M.S. Al-Buriahi, Bioactive glasses doped with TiO2 and their potential use in radiation shielding applications. Ceram. Int. 46(10), 14721–14732 (2020). https://doi.org/10.1016/j.ceramint.2020.02.276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edukondalu, A., Stalin, S., Reddy, M.S. et al. Synthesis, thermal, optical, mechanical and radiation-attenuation characteristics of borate glass system modified by Bi2O3/MgO. Appl. Phys. A 128, 331 (2022). https://doi.org/10.1007/s00339-022-05475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05475-3

Keywords

Navigation