Skip to main content
Log in

Development of the new interatomic potentials for the wurtzite phase of ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new set of interatomic potentials combining the Morse and Born–Mayer forms is developed via the empirical fitting and ab initio energy surface fitting for the wurtzite phase of ZnO. The fitting values are extracted from the lattice parameters, elastic constants, and energy difference for ZnO with rock-salt and wurtzite phases. The validity and reliability of the interatomic potentials are verified by means of the lattice dynamics, molecular dynamics, and first-principles methods, respectively. The lattice parameters, elastic properties, and structural stabilities of ZnO are accurately reproduced with the new potentials, and the volume ratio is evaluated at high temperature and pressure. The phase transition pressures of ZnO from wurtzite and zinc-blende phases to rock-salt phase are predicted successfully. In addition, the melting temperature is calculated by applying the single-phase and two-phase molecular dynamics simulations approaches for ZnO with wurtzite phase, where the crystallization temperature and coordination number are also investigated through the radial distribution function. Finally, the elastic properties, including bulk modulus, Young's modulus, shear modulus, sound velocity, and elastic anisotropy, of ZnO with wurtzite phase are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

taken from inelastic neutron scattering experiments and DFT calculations [32]

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi, J. Alloys Compd. 496, 399–402 (2010)

    Article  Google Scholar 

  2. M.P. Molepo, D.P. Joubert, Phys. Rev. B 84, 094110 (2011)

    Article  ADS  Google Scholar 

  3. D. Zagorac, J.C. Schön, J. Zagorac, M. Jansen, Phys. Rev. B 89, 075201 (2014)

    Article  ADS  Google Scholar 

  4. F. Wang, J.H. Wu, C.H. Xia, C.H. Hu, C.L. Hu, P. Zhou, L.N. Shi, Y.L. Ji, Z. Zheng, X.K. Liu, J. Alloys Compd. 597, 50–57 (2014)

    Article  Google Scholar 

  5. F.-G. Kuang, X.-Y. Kuang, S.-Y. Kang, M.-M. Zhong, X.-W. Sun, Mat. Sci. Semicond. Proc. 31, 700–708 (2015)

    Article  Google Scholar 

  6. M.A. Kamboh, H. Wang, L. Wang, L. Hao, Y. Su, L. Chen, Q. Wang, Mater. Sci. Eng. B 265, 115008 (2021)

    Article  Google Scholar 

  7. S. Cui, W. Feng, H. Hu, Z. Feng, Y. Wang, J. Alloys Compd. 476, 306–310 (2009)

    Article  Google Scholar 

  8. J. Wróbel, J. Piechota, Solid State Commun. 146, 324–329 (2008)

    Article  ADS  Google Scholar 

  9. S. Wang, Z. Fan, R.S. Koster, C. Fang, M.A. van Huis, A.O. Yalcin, F.D. Tichelaar, H.W. Zandbergen, T.J.H. Vlugt, J. Phys. Chem. C 118, 11050 (2014)

    Article  Google Scholar 

  10. Y. Tian, J. Ding, X. Huang, K. Song, S.-Q. Lu, H.-R. Zheng, Phys. Rev. B Condens. Matter 574, 311657 (2019)

    Article  Google Scholar 

  11. U.K. Deiters, R.J. Sadus, J. Chem. Phys. 150, 134504 (2019)

    Article  ADS  Google Scholar 

  12. D.J. Binks, R.W. Grimes, J. Am. Ceram. Soc. 76, 2370–2372 (1993)

    Article  ADS  Google Scholar 

  13. P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006)

    ADS  Google Scholar 

  14. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  Google Scholar 

  15. X. Dong, F. Liu, Y. Xie, W. Shi, X. Ye, J.Z. Jiang, Comput. Mater. Sci. 65, 450–455 (2012)

    Article  Google Scholar 

  16. D. Raymand, A.C.T. van Duin, M. Baudin, K. Hermansson, Surf. Sci. 602, 1020–1031 (2008)

    Article  ADS  Google Scholar 

  17. B. Mortazavi, M. Silani, E.V. Podryabinkin, T. Rabczuk, X. Zhuang, A.V. Shapeev, Adv. Mater. 33, 2102807 (2021)

    Article  Google Scholar 

  18. B. Mortazavi, I.S. Novikov, E.V. Podryabinkin, S. Roche, T. Rabczuk, A.V. Shapeev, X. Zhuang, Appl. Mater. Today 20, 100685 (2020)

    Article  Google Scholar 

  19. A.P. Bartók, J. Kermode, N. Bernstein, G. Csányi, Phys. Rev. X 8, 041048 (2018)

    Google Scholar 

  20. X. Ma, Y. Wu, Y. Lv, Y. Zhu, J. Phys. Chem. C 117, 26029–26039 (2013)

    Article  Google Scholar 

  21. V. Wang, D. Ma, W. Jia, W. Ji, Solid State Commun. 152, 2045–2048 (2012)

    Article  ADS  Google Scholar 

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Z. Krist. Cryst. Mater. 220, 567–570 (2005)

    Article  Google Scholar 

  23. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768–9774 (1992)

    Article  Google Scholar 

  24. J.D. Gale, A.L. Rohl, Mol. Simulat. 29, 291–341 (2003)

    Article  Google Scholar 

  25. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  26. G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101, 4177 (1994)

    Article  ADS  Google Scholar 

  27. P.P. Ewald, Ann. Phys. 369, 253–287 (1921)

    Article  Google Scholar 

  28. J. Albertsson, S. Abrahams, Å. Kvick, Acta Cryst. 45, 34–40 (1989)

    Article  Google Scholar 

  29. J.E. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, Phys. Rev. B 62, 1660 (2000)

    Article  ADS  Google Scholar 

  30. M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Appl. Phys. A 124, 1–7 (2018)

    Article  Google Scholar 

  31. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Comput. Phys. Commun. 182, 2232–2248 (2011)

    Article  ADS  Google Scholar 

  32. J. Serrano, F.J. Manjón, A.H. Romero, A. Ivanov, M. Cardona, R. Lauck, A. Bosak, M. Krisch, Phys. Rev. B 81, 174304 (2010)

    Article  ADS  Google Scholar 

  33. M. Kalay, H.H. Kart, S. Özdemir Kart, T. Çağın, J. Alloys Compd. 484, 431–438 (2009)

    Article  Google Scholar 

  34. Y. Zou, S. Xiang, C. Dai, Comput. Mater. Sci. 171, 109156 (2020)

    Article  Google Scholar 

  35. C. Cazorla, D. Errandonea, J. Phys. Chem. C 117, 11292–11301 (2013)

    Article  Google Scholar 

  36. L.A. Valdez, M.A. Caravaca, R.A. Casali, J. Phys. Chem. Solids 134, 245–254 (2019)

    Article  ADS  Google Scholar 

  37. C. Fu, X. Zhang, Y. Duan, Y. Xia, T. Li, X. Dai, H. Li, J. Appl. Phys. 127, 034301 (2020)

    Article  ADS  Google Scholar 

  38. A.K. Srivastava, R. Gakhar, P. Dua, K. Senthil, K. Yong, Microsc. Sci. Technol. Appl. Educ. 3, 1820 (2010)

    Google Scholar 

  39. A. Roy, Y.T. Cheng, M.L. Falk, J. Phys. Chem. C 120, 2529–2535 (2016)

    Article  Google Scholar 

  40. H. Kurban, S. Alaei, M. Kurban, J. Non-Cryst. Solids 560, 120726 (2021)

    Article  Google Scholar 

  41. C.X. Li, Y.H. Duan, W.C. Hu, J. Alloys Compd. 619, 66–77 (2015)

    Article  Google Scholar 

  42. L. Bao, Z. Kong, D. Qu, Y. Duan, Mater. Today Commun. 24, 101337 (2020)

    Article  Google Scholar 

  43. G. Tse, Comput. Condens. Matter 26, e00525 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Natural Science Foundation of Gansu Province (No. 20JR5RA427), the Talent Innovation and Entrepreneurship Project of Lanzhou (No. 2020-RC-18), and the National Natural Science Foundation of China (No. 11164013).

Author information

Authors and Affiliations

Authors

Contributions

X-WW: methodology, investigation, software, and writing-original draft. X-WS: guidance, review, revision, formal analysis, and resources. TS: methodology, discussion, and revision. J-HT: formal analysis, data curation, and discussion. Z-JL: methodology, software, discussion, and editing.

Corresponding authors

Correspondence to Xiao-Wei Sun or Zi-Jiang Liu.

Ethics declarations

Conflict of interest

The authors declared that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Sun, XW., Song, T. et al. Development of the new interatomic potentials for the wurtzite phase of ZnO. Appl. Phys. A 128, 482 (2022). https://doi.org/10.1007/s00339-022-05572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05572-3

Keywords

Navigation