Skip to main content

Advertisement

Log in

First principle study of opto-electronic and thermoelectric properties of Zintl Phase XIn2Z2 (X = Ca, Sr and Z = As, Sb)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the realm of DFT, the optoelectronic and thermoelectric properties of Zintl phase XIn2Z2 (X = Ca, Sr and Z = As, Sb) compounds are studied in P63/mmc symmetry. The estimated structural properties are well agreement with the experimental work. Their cohesive energy and enthalpy demonstrate the thermodynamic stability of these compounds. X In2As2 compounds are direct bandgap semiconductors at Г symmetry, XIn2Sb2 compounds are indirect bandgap semiconductors at M symmetry, according to electronic characteristics. The direct bandgap values range from 0.209 to 0.894 eV, whereas the indirect bandgaps lies in rang of 0.211–0.281 eV. With the replacement of As with Sb, not only the transition of bandgap occurs from direct to indirect and also decrease the bandgap of the understudy compounds. All of the substances are optically active in the infrared range of the electromagnetic spectrum, based on their optical properties. The optical characteristics suggest that they could be employed in optoelectronic devices. Due to low band gap and high value of ZT of the compound SrIn2Sb2; it is more suitable for thermoelectric applications then the rest compounds. The thermoelectric properties indicate that they are helpful as active thermoelectric materials in the fields of thermoelectric cooling, thermoelectric power production for wearable systems, thermoelectric Peltier micro coolers, and thermoelectric generation, as well as nano-thermocouples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.M. Kauzlarich, S.R. Brown, G.J. Snyder, Zintl phases for thermoelectric devices. Dalton Trans. 21, 2099–2107 (2007). https://doi.org/10.1039/B702266B

    Article  Google Scholar 

  2. J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, Z. Ren, Recent progress and future challenges on thermoelectric Zintl materials. Mater. Today. Phys. 1, 74–95 (2017). https://doi.org/10.1016/j.mtphys.2017.06.003

    Article  Google Scholar 

  3. E.S. Toberer, A.F. May, G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2009). https://doi.org/10.1021/cm901956r

    Article  Google Scholar 

  4. P. Ren, Y. Liu, J. He, T. Lv, J. Gao, G. Xu, Recent advances in inorganic material thermoelectrics. Inorg. Chem. Front. 5, 2380 (2018). https://doi.org/10.1039/c8qi00366a

    Article  Google Scholar 

  5. E. Zintl, W. Dullenkopf, Polyantimonide, polywismutide und ihr übergang in legierungen. Z. Phys. Chem. 16B, 183–194 (1932). https://doi.org/10.1515/zpch-1932-1615

    Article  Google Scholar 

  6. F. Laves, Eduard Zintls arbeiten uber die chemie und struktur von legierungen. Naturwissenschaften 29, 244–255 (1941). https://doi.org/10.1007/BF01479157

    Article  ADS  Google Scholar 

  7. E. Zintl, Intermetallische verbindungen. Angew Chemie. 52, 1–6 (1939). https://doi.org/10.1002/ange.19390520102

    Article  ADS  Google Scholar 

  8. H. Schafer, B. Eisenmann, W. Müller, Zintl phases: transitions between metallic and ionic bonding. Angew. Chem Int. Ed. Engl. 12, 694–712 (1973). https://doi.org/10.1002/anie.197306941

    Article  Google Scholar 

  9. H. He, C. Tyson, M. Saito, S. Bobev, Synthesis and structural characterization of the ternary Zintl phases AE3Al2Pn4 and AE3Ga2Pn4 (AE = Ca, Sr, Ba, Eu; Pn = P, As). J. Solid State Chem. 188, 59–65 (2012). https://doi.org/10.1016/j.jssc.2012.01.042

    Article  ADS  Google Scholar 

  10. A. Ovchinnikov, S. Bobev, Zintl phases with group 15 elements and the transition metals: a brief overview of pnictides with diverse and complex structures. J. Solid State Chem. 270, 346–359 (2019). https://doi.org/10.1016/j.jssc.2018.11.029

    Article  ADS  Google Scholar 

  11. C.J. Perez, G. Cerretti, E.L.K. Wille, K.P. Devlin, N.S. Grewal, A.P. Justl, M. Wood, S.K. Bux, S.M. Kauzlarich, Evolution of thermoelectric properties in the triple cation zintl phase: Yb13–xCaxBaMgSb11 (x = 1–6). Chem. Mater. 33, 8059–8069 (2021). https://doi.org/10.1021/acs.chemmater.1c02584

    Article  Google Scholar 

  12. C.J. Perez, Z. Chen, W.B. Beeson, S. Chanakian, K. Liu, S.K. Bux, S.M. Kauzlarich, Chemical route to Yb14MgSb11 composites with nanosized iron inclusions for the reduction of thermal conductivity. ACS Appl. Energy. Mater. 4(4), 3748–3756 (2021). https://doi.org/10.1021/acsaem.1c00163

    Article  Google Scholar 

  13. S. Baranets, S. Bobev, Caught in action: the late rare earths thulium and lutetium substituting aluminum atoms in the structure of Ca14AlBi11. J. Am. Chem. Soc. 143(1), 65–68 (2021). https://doi.org/10.1021/jacs.0c11026

    Article  Google Scholar 

  14. Y. Liu, M.Y. Toriyama, Z. Cai, M. Zhao, F. Liu, G.J. Snyder, Finding the order in complexity: the electronic structure of 14-1-11 zintl compounds. Appl. Phys. Lett. 119(21), 213902 (2021). https://doi.org/10.1063/5.0068386

    Article  ADS  Google Scholar 

  15. S. Baranets, S. Bobev, From the ternary phase Ca14Zn1+δSb11 (δ ≈ 0.4) to the quaternary solid solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A tale of electron doping via rare-earth metal substitutions and the concomitant structural transformations. Inorg. Chem. 58(13), 8506–8516 (2019). https://doi.org/10.1021/acs.inorgchem.9b00809

    Article  Google Scholar 

  16. W. Tan, Z. Wu, M. Zhu, J. Shen, T. Zhu, X. Zhao, B. Huang, X.T. Tao, S.Q. Xia, A14MgBi11 (A = Ca, Sr, Eu): magnesium bismuth based zintl phases as potential thermoelectric materials. Inorg. Chem. 56(17), 10576–10583 (2017). https://doi.org/10.1021/acs.inorgchem.7b01548

    Article  Google Scholar 

  17. W.J. Tan, Y.T. Liu, M. Zhu, Y.T. Zhu, X.B. Zhao, X.T. Tao, S.Q. Xia, Structure, magnetism, and thermoelectric properties of magnesium-containing antimonide zintl phases Sr14MgSb11 and Eu14MgSb11. Inorg. Chem. 56(3), 1646–1654 (2017). https://doi.org/10.1021/acs.inorgchem.6b02724

    Article  Google Scholar 

  18. Y. Hu, C.W. Chen, H. Cao, F. Makhmudov, J.H. Grebenkemper, M.N. Abdusalyamova, E. Morosan, S.M. Kauzlarich, Tuning magnetism of [MnSb4]9–cluster in Yb14MnSb11 through chemical substitutions on Yb sites: appearance and disappearance of spin reorientation. J. Am. Chem. Soc. 138(38), 12422–12431 (2016). https://doi.org/10.1021/jacs.6b05636

    Article  Google Scholar 

  19. J.H. Grebenkemper, Y. Hu, D. Barrett, P. Gogna, C.K. Huang, S.K. Bux, S.M. Kauzlarich, High temperature thermoelectric properties of Yb14MnSb11 prepared from reaction of MnSb with the elements. Chem. Mater. 27(16), 5791–5798 (2015). https://doi.org/10.1021/acs.chemmater.5b02446

    Article  Google Scholar 

  20. N.A. Pieczulewski, M. Wood, M.Y. Toriyama, J.P. Male, K.J. Griffith, G. Je, Snyder: Possibility of interstitial Na as electron donor in Yb14MgSb11. MRS Commun. 11(3), 226–232 (2021). https://doi.org/10.1557/s43579-021-00019-x

    Article  Google Scholar 

  21. C.J. Perez, M. Wood, F. Ricci, G. Yu, T. Vo, S.K. Bux, G. Hautier, G.M. Rignanese, G.J. Snyder, Susan M. Kauzlarich, Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb14MnSb11 and Yb14MgSb11. Sci Adv (2021). https://doi.org/10.1126/sciadv.abe9439

    Article  Google Scholar 

  22. A. He, E.L. Kunz Wille, L.M. Moreau, S.M. Thomas, J.M. Lawrence, E.D. Bauer, C.H. Booth, S.M. Kauzlarich, Intermediate Yb valence in the Zintl phases Yb14MSb11 (M = Zn XANES, magnetism, and heat capacity. Phys. Rev. Mater Mn, Mg (2020). https://doi.org/10.1103/PhysRevMaterials.4.114407

    Article  Google Scholar 

  23. S. Baranets, G.M. Darone, S. Bobev, Synthesis and structure of Sr14Zn1+xAs11 and Eu14Zn1+xAs11 (x ≤ 05). New members of the family of pnictides isotypic with Ca14AlSb11, exhibiting a new type of structural disorder. J. Solid State Chem. 280, 120990 (2019). https://doi.org/10.1016/j.jssc.2019.120990

    Article  Google Scholar 

  24. S. Baranets, S. Bobev, Ca14AlBi11-a new Zintl phase from earth-abundant elements with a great potential for thermoelectric energy conversion. Mater. Today Advances 7, 100094 (2020). https://doi.org/10.1016/j.mtadv.2020.100094

    Article  Google Scholar 

  25. E.K. Wille, N. Grewal, S. Bux, S. Kauzlarich, Seebeck and figure of merit enhancement by rare earth doping in Yb14-xRExZnSb11 (x = 05). Materials 12(5), 731 (2019). https://doi.org/10.3390/ma12050731

    Article  ADS  Google Scholar 

  26. Y. Hu, G. Cerretti, E.K. Wille, S.K. Bux, S.M. Kauzlarich, The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties. J. Solid State Chem. 271, 88–102 (2019). https://doi.org/10.1016/j.jssc.2018.12.037

    Article  ADS  Google Scholar 

  27. Y. Hu, K. Lee, S. Kauzlarich, Optimization of Ca14MgSb11 through chemical substitutions on sb sites: optimizing seebeck coefficient and resistivity simultaneously. Curr. Comput.-Aided Drug Des. 8(5), 211 (2018). https://doi.org/10.3390/cryst8050211

    Article  Google Scholar 

  28. Y. Wang, Y.J. Hu, S.A. Firdosy, K.E. Star, J.P. Fleurial, V.A. Ravi, L.Q. Chen, S.L. Shang, Z.K. Liu, First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11. J. Appl. Phys. 123(4), 045102 (2018). https://doi.org/10.1063/1.5013601

    Article  ADS  Google Scholar 

  29. J. Prakash, S. Stoyko, L. Voss, S. Bobev, On the extended series of quaternary zintl phases Ca13ReMnSb11 (RE = La–Nd, Sm, Gd–Dy). Eur. J. Inorg. Chem. 2016(18), 2912–2922 (2016). https://doi.org/10.1002/ejic.201600306

    Article  Google Scholar 

  30. W. Peng, S. Chanakian, A. Zevalkink, Crystal chemistry and thermoelectric transport of layered AM2X2 compounds. Inorg. Chem. Front. 5, 1744–1759 (2018). https://doi.org/10.1039/C7QI00813A

    Article  Google Scholar 

  31. U. Aydemir, A. Zevalkink, A. Ormeci, Z.M. Gibbs, S. Bux, G.J. Snyder, Thermoelectric enhancement in BaGa2Sb2 by Zn doping. Chem. Mater. 27, 1622–1630 (2015). https://doi.org/10.1021/cm5042937

    Article  Google Scholar 

  32. S.Q. Xia, S. Bobev, Cation-anion interactions as structure directing factors: structure and bonding of Ca2CdSb2 and Yb2CdSb2. J. Am. Chem. Soc. 129, 4049–4057 (2007). https://doi.org/10.1021/ja069261k

    Article  Google Scholar 

  33. P. Klüfers, A. Mewis, AB2X2-verbindungen mit CaAl2Si2-struktur. Z. Krist.-Cryst. Mater. 169, 135–148 (1984). https://doi.org/10.1524/zkri.1984.169.14.135

    Article  Google Scholar 

  34. J. Munir, A.S. Jbara, Q. Ain, K. Fatima, N.A. Noor, H. Naeem, M. Jamil, M. Yousaf, An insight into the electronic, optical and transport properties of promising Zintl-phase BaMg2P2. Phys. B: Conden. Matter. 618(1), 413181 (2021). https://doi.org/10.1016/j.physb.2021.413181

    Article  Google Scholar 

  35. K. Fatima, Q. Ain, L. Mohammad, M. Jamil, A.M. Khan, M. Yousaf, J. Munir, Ground state electronic structure, optical and thermoelectric response of Zintl phase MgAl2X2 (X= C, Sb) for renewable energy applications. Phys. B: Conden. Matter. 631(15), 413688 (2022). https://doi.org/10.1016/j.physb.2022.413688

    Article  Google Scholar 

  36. B. Saparov, S. Bobev, Isolated ∞ 1 [ZnPn2]4– chains in the zintl phases Ba2ZnPn2 (Pn = as, Sb, Bi); synthesis, structure, and bonding. Inorg. Chem. 49, 5173–5179 (2010). https://doi.org/10.1021/ic100296x

    Article  Google Scholar 

  37. D.K. Wilson, B. Saparov, S. Bobev, Synthesis, crystal structures and properties of the Zintl phases Sr2ZnP2, Sr2ZnAs2, A2ZnSb2 and A2ZnBi2 (A = Sr and Eu). Z. Anorg. Allg. Chem. 637, 2018–2025 (2011). https://doi.org/10.1002/zaac.201100177

    Article  Google Scholar 

  38. J. Wang, M. Yang, M.Y. Pan, S.Q. Xia, X.-T. Tao, H. He, G. Darone, S. Bobev, Synthesis, crystal and electronic structures, and properties of the new pnictide semiconductors A2CdPn2 (A = Ca, Sr, Ba, Eu; Pn = P, As). Inorg. Chem. 50, 8020–8027 (2011). https://doi.org/10.1021/ic200286t

    Article  Google Scholar 

  39. M.O. Ogunbunmi, S. Baranets, A.B. Childs, S. Bobev, The Zintl phases Aln2As2 (A = Ca, Sr, Ba): new topological insulators and thermoelectric material candidates. Dalton Trans. 50, 9173 (2021). https://doi.org/10.1039/dldt01521d

    Article  Google Scholar 

  40. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. Madsen, L.D. Mark, WIEN2k: an augmented plane waves plus local orbitals program for calculating the properties of solid. J. Chem. Phys. 152, 074101–074130 (2020). https://doi.org/10.1063/1.5143061@jcp.2020.ESS2020

    Article  ADS  Google Scholar 

  43. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for manyelectron systems Phys. Rev. B 23, 5048 (1981). https://doi.org/10.1103/PhysRevB.23.5048

    Article  Google Scholar 

  44. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. Lett. 54, 16533 (1996). https://doi.org/10.1103/PhysRevB.54.16533

    Article  Google Scholar 

  45. A.D. Becke, E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)

    Article  ADS  Google Scholar 

  46. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  Google Scholar 

  47. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83, 195134 (2011). https://doi.org/10.1103/PhysRevB.83.195134

    Article  ADS  Google Scholar 

  48. D. Koller, F. Tran, P. Blaha: Improving the modified Becke–Johnson exchange potential. Phys. Rev. B: Condens. Matter Mater. Phys. 85, (2012) https://doi.org/10.1103/PhysRevB.85.155109. https://doi.org/10.1063/1.2213970

  49. G.K.H. Madsen, D.J. Sing, BoltzTrape. A code for calculations band structure dependent quantites. Comput. Phys. Commun. 175(1), 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  50. G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1 (1979). https://doi.org/10.1016/S0081-1947(08)60359-8

    Article  Google Scholar 

  51. D.T. Morelli, V. Jovovic, J.P. Heremans, Intrinsically minimal thermal conductivity in CubicI-V-VI2 Semiconductors. Phys Rev Lett. 101, 035901 (2008). https://doi.org/10.1103/PhysRevLett.101.035901

    Article  ADS  Google Scholar 

  52. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947). https://doi.org/10.1103/PhysRev.71.809

    Article  MATH  ADS  Google Scholar 

  53. S. Mehmood, Z. Ali, I. Khan, I. Ahmad, Effects of A-site cation on the physical properties of quaternary perovskites AMn3V4O12 (A= Ca, Ce and Sm). Mater. Chem. Phys. 254, 123229 (2020). https://doi.org/10.1016/j.matchemphys.2020.123229

    Article  Google Scholar 

  54. S.J. Youn, A.J. Freeman, First-principles electronic structure and its relation to the thermoelectric properties of Bi2Te3. Phys. Rev. B. 63, 085112 (2001). https://doi.org/10.1103/Phys.Rev.B.63.085112

    Article  ADS  Google Scholar 

  55. J.L. Cui, X.J. Zhang, Y. Deng, H. Fu, Y.M. Yan, Y. Li, Y. Gao, Y.Y. Li, Modified structure and improved thermoelectric property in Ag-added polycrystalline In2Se3. Scripta Mater. 64, 510–512 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.026

    Article  Google Scholar 

  56. J.L. Cui, X.J. Zhang, Y. Li, Y. Gao, Effect of band gap reduction on the thermoelectric properties of In2Se3 based semiconductors after co-doping of Cu and Te. Rare. Metal. Mat. Eng. 41(12), 2118–2122 (2012)

    Google Scholar 

  57. S. Naz, Z. Ali, S. Mehmood, I. Khan, I. Ahmad, Spin-orbit coupling effect on the optoelectronic and thermoelectric properties of the perovskites A3SnO (A = Ca, Sr and Ba). Mater. Sci. Semicond. Proces. 132, 105905 (2021). https://doi.org/10.1016/J.MSSP.2021.105905

    Article  Google Scholar 

  58. A.F. May, M.A. Mcguire, D.J. Sing, J. Ma, O. Delaire, A. Huq, W. Cai, H. Wang, Thermoelectric properties of CaMg2Bi2, EuMg2Bi2 and YbMg2Bi2. Phys. Rev. B. 85, 035202 (2012). https://doi.org/10.1103/PhysRevB.85.035202

    Article  ADS  Google Scholar 

  59. N. Guechi, A. Bouhemadou, Y. Medkour, Y. Al-Douri, R. Khenata, S. BinOmran, Electronic and thermoelectric properties of the layered Zintl phase CaIn2P2: firstprinciples calculations. Philos. Mag. (2020). https://doi.org/10.1080/14786435.2020.1799101

    Article  Google Scholar 

  60. H. He, R. Stearrett, E.R. Nowak, S. Bobev, BaGa2Pn2 (Pn = P, As): new semiconducting phosphides and arsenides with layered structures. Inorg. Chem. 49(17), 7935–7940 (2010). https://doi.org/10.1021/ic100940b

    Article  Google Scholar 

  61. H. He, R. Stearrett, E.R. Nowak, S. Bobev, Gallium pnictides of the alkaline earth metals, synthesized by means of the flux method: crystal structures and properties of CaGa2Pn2, SrGa2As2, Ba2Ga5As5, and Ba4Ga5Pn8 (Pn = P or As) Eur. J. Inorg. Chem. (2011). https://doi.org/10.1002/ejic.201100065

    Article  Google Scholar 

  62. G.S. Pomrehn, A. Zevalkink, W.G. Zeier, A.V. Walle, G.J. Snyder, Defect controlled electronic properties in AZn2Sb2 zintl phases. Angew. Chem 126, 3490–3494 (2014). https://doi.org/10.1002/ange.201311125

    Article  ADS  Google Scholar 

  63. U. Aydemir, A. Zevalkink, A. Ormeci, S. Bux, G.J. Snyder, Enhanced thermoelectric properties of the Zintl phase BaGa2Sb2 via doping with Na or K. J. Mater. Chem. A 4, 1867–1875 (2016). https://doi.org/10.1039/C5TA07612A

    Article  Google Scholar 

  64. D.J. Sing, D. Parker, Electronic and transport properties of Zintl phase AeMg2Pn2, Ae = Ca, Sr, Ba, Pn = As, Sb, Bi in relation to Mg3Sb2. J. Appl. Phys. 114, 143703 (2013). https://doi.org/10.1063/1.4824465

    Article  ADS  Google Scholar 

  65. J. Vidal, S. Lany, M. Davezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl. Phys. Lett. 100, 032104 (2012). https://doi.org/10.1063/1.3675880

    Article  ADS  Google Scholar 

  66. I. Ullah, G. Murtaza, R. Khenata, A. Mahmood, A. Yar, M. Muzammil, N. Amin, M. Seleh, Structural and optoelectronic properties of X3ZN (X = Ca, Sr, Ba; Z = As, Sb, Bi) anti-perovskite compounds. J. Electro. Mater. 45, 3059–3068 (2016)

    Article  ADS  Google Scholar 

  67. T. Abasi, A. Boochani, S.R. Masharian, Metallic and intra-band investigation of optical properties for Borophene nano-sheet: a DFT study. Int. Nano Lett. 10, 33–41 (2020). https://doi.org/10.1007/s40089-019-00288-4

    Article  Google Scholar 

  68. Y. Al-Douri, B. Merabet, H. Abid, R. Khenata, First-principles calculations to investigate optical properties of ByAlxIn1-x-yN alloys for optoelectronic devices. Superlattics. Microstruct. 51, 404–411 (2012). https://doi.org/10.1016/j.spmi.2012.01.004

    Article  ADS  Google Scholar 

  69. A.R. Chaudhry, R. Ahmed, A. Irfan, M. Mohamad, S. Muhammad, B. Ul Haq, Abdullah G. Al-Sehemi, Y. Al-Douri, Optoelectronic properties of naphtho[2, 1-b:6, 5-b′]difuran derivatives for photovoltaic application: a computational study. J. Mol. Model. 22, 248–260 (2016). https://doi.org/10.1007/s00894-016-3121-y

    Article  Google Scholar 

  70. A. Benahmed, A. Bouhemadou, B. Alqarni, N. Guechi, Y. Al-Douri, R. Khenata, S. Bin-Omran, Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba). Philos. Mag. 98, 1217–1240 (2018). https://doi.org/10.1080/14786435.2018.1425013

    Article  ADS  Google Scholar 

  71. L. Salik, A. Bouhemadou, K. Boudiaf, F.S. Saoud, S. Bin-Omran, R. Khenata, Y. Al-Douri, A.H. Reshak, Structural, elastic, electronic, magnetic, optical, and thermoelectric properties of the diamond-like quaternary semiconductor CuMn2InSe4. J. Supercond. Nov. Magn. 33, 1091–1102 (2020). https://doi.org/10.1007/s10948-019-05331-1

    Article  Google Scholar 

  72. S. Loughin, R.H. French, L.K. Noyer, W.Y. Ching, Y.N. Xu, J. Phys. D. 29, 1740 (1996). https://doi.org/10.1088/0022-3727/29/7/009

    Article  ADS  Google Scholar 

  73. H.A.R. Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, E.A. Kakhki, Phys. Status Solidi B. 246, 1072 (2009). https://doi.org/10.1002/pssb.200844359

    Article  ADS  Google Scholar 

  74. N.M. Yatim, N. Zahidah, I.M. Sallehin, S. Suhaimi, M.A. Hashim, AIP Conf. Proc. 1972, 030002 (2018). https://doi.org/10.1063/1.5041223

    Article  Google Scholar 

  75. O.C. Calero, J.R. Ares, M.M. González, Adv. Sutain. Syst. 5, 2100095 (2021). https://doi.org/10.1002/adsu.202100095

    Article  Google Scholar 

  76. F.F. Jaldurgam, Z. Ahmad, F. Touati, Nanomaterials 11, 895 (2021). https://doi.org/10.3390/nano11040895

    Article  Google Scholar 

  77. F. Gao, M.R. Iravani, IEEE Trans. Power Deliv. 31, 23–31 (2008). https://doi.org/10.1109/TPWRD.2007.915950

    Article  Google Scholar 

  78. G.A. Slack, The thermal conductivity of nonmetallic crystals. J. appl. Phys. Solid State Phys. 34, 1 (1979). https://doi.org/10.1016/S0081-1947(08)60359-8

    Article  Google Scholar 

  79. A. Zevalkink, G. Pomrehn, Y. Takagiwa, J. Swallow, G.J. Snyder, Thermoelectric properties and electronic structure of the zintl phase Sr3AlSb3. Chem. Sus. Chem. 6, 2316–2321 (2013)

    Article  Google Scholar 

  80. A. Zevalkink, E.S. Toberer, W.G. Zeier, E.F. Larsen, G.J. Snyder, Ca3AlSb3 an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510–518 (2011)

    Article  Google Scholar 

  81. A. Zevalkink, J. Swallow, S. Ohno, U. Aydemir, S. Bux, G.J. Snyder, Thermoelectric properties of the Ca5Al2-xInxSb6 solid solution. Dalton Trans. 43, 15872–15878 (2014)

    Article  Google Scholar 

  82. N. Kazem, A. Hurtado, F. Sui, S. Ohno, A. Zevalkink, J.G. Snyder, S.M. Kauzlarich, High temperature thermoelectric properties of the solid-solution zintl phase Eu11Cd6-xZnxSb12. Chem. Mater. 27, 4413–4421 (2015)

    Article  Google Scholar 

  83. S. Ohno, U. Aydemir, M. Amsler, J.H. Pöhls, S. Chanakian, A. Zevalkink, M.A. White, S.K. Bux, C. Wolverton, G.J. Snyder, Achieving ZT > 1 in Inexpensive zintl phase Ca9Zn4+xSb9 by phase boundary mapping. Adv. Funct. Mater. 27, 1606361 (2017)

    Article  Google Scholar 

  84. A. Assoud, N. Soheilnia, H. Kleinke, New quaternary barium copper/silver selenostannates: different coordination spheres, metal-metal interactions, and physical properties. Chem. Mater. 17, 2255–2261 (2005). https://doi.org/10.1021/cm050102u

    Article  Google Scholar 

  85. A. Assoud, S. Derakhshan, N. Soheilnia, H. Kleinke, Chem. Mater. 16, 4193–4198 (2004). https://doi.org/10.1021/cm049155m

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R70), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alburaih, H.A., Aman, S., Mehmood, S. et al. First principle study of opto-electronic and thermoelectric properties of Zintl Phase XIn2Z2 (X = Ca, Sr and Z = As, Sb). Appl. Phys. A 128, 451 (2022). https://doi.org/10.1007/s00339-022-05582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05582-1

Keywords

Navigation