Skip to main content
Log in

Long- and short-range magnetic interactions in nanocrystalline lightly Cr‑doped manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigated the effect of lightly \({\text{Cr}}^{3 + }\)-doped ions on the structural, magnetic, and critical behavior of the nominal composition \({\text{La}}_{0.7} {\text{Ca}}_{0.3} {\text{Mn}}_{1 - x} {\text{Cr}}_{x} {\text{O}}_{3}\) \((0 \le x \le 0.09\)). Our compounds adopted a single phase with a rhombohedral structure (space group R\(\overline{3}\)c). Furthermore, a comparative study of the crystallite sizes of compounds by X-ray powder diffraction, XRD, is reported. Individual contributions of the crystallite sizes and lattice microstrains were examined through the Williamson–Hall (W–H) analysis, the size-strain plot (SSP), and Halder–Wagner (H–W) methods. Greater accuracy was noted with W–H, where points were more likely to contact the fitting line than those using other methods. From magnetic data analyzed, a second-order paramagnetic–ferromagnetic phase transition appears at Curie temperatures, \(T_{{\text{C}}}\), between \(212\) and \(261 {\text{K}}\). A deviation from the Curie Weiss law is due to the presence of local inhomogeneities in our samples for \(T \ge T_{{\text{C}}}\) characteristic of a Griffiths Phase. The critical coefficient values obtained for β, γ, and δ from different methods are fairly close to the theoretical prediction of the tricritical mean-field model for \(x = 0.0\) and \(0.03\) and which are in accordance with those predicted by the 3D Ising model for \(x = 0.06\). The values found for β, γ, and δ are close to those expected for the mean field \(x = 0.09\). In our samples, we found that two types of interactions exist, long-range exchange interactions for \(x = 0.0, 0.03\) and \(0.06\) and short-range exchange interactions for \(x = 0.09\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Greco, C. Aprea, A. Maiorino, C. Masselli, A review of the state of the art of solid-state caloric cooling processes at room-temperature. Int. J. Refrig 106, 66–88 (2019). https://doi.org/10.1016/j.ijrefrig.2019.06.034

    Article  Google Scholar 

  2. P. Singh, B. Singh, M. Gupta, Fe+3-Mn+4 and Ti+4-Mn+3 interactions effect on the structural, electronic, magnetic and magnetoelectronic properties of perovskite manganites. Ceram. Int. 48(3), 4074–4079 (2022). https://doi.org/10.1039/C7RA08610E

    Article  Google Scholar 

  3. E. Zubov, A. Pashchenko, N. Nedelko, I. Radelytskiy, K. Dyakonov, A. Krzyżewski, H. Szymczak, Magnetic and magnetocaloric properties of the La0.9−xAgxMnO3 compounds. Low Temp. Phys. 43(10), 1190–1195 (2017). https://doi.org/10.1007/s10948-019-4997-4

    Article  ADS  Google Scholar 

  4. M.W. Shaikh, D. Varshney, Structural properties and electrical resistivity behaviour of La1− xKxMnO3 (x= 0.1, 0.125 and 0.15) manganites. Mater. Chem. Phys. 134(2–3), 886–898 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.086

    Article  Google Scholar 

  5. Z. Jirák, J. Hejtmánek, K. Knı́žek, R. Sonntag, Structure and properties of the Pr1− xKxMnO3 perovskites (x= 0–0.15). J. Solid State Chem. 132(1), 98–106 (1997). https://doi.org/10.1006/jssc.1997.7414

    Article  ADS  Google Scholar 

  6. A. Zaidi, T. Alharbi, J. Dhahri, S. Alzobaidi, M. Zaidi, E. Hlil, LaPbKMnO perovskites synthesized by sol-gel method: the effect of potassium substitution on the magnetic and electrical properties. Appl. Phys. A Mater. Sci. Process. (2017). https://doi.org/10.1007/s00339-016-0655-x

    Article  Google Scholar 

  7. H. Gencer, U. Ozkan, N. Bayri, T. Izgi, V.S. Kolat, Magnetic and magnetocaloric properties of La0.94Bi0.06Mn1-xCrxO3 (x= 0, 0.05, 0.1, 0.15, 0.2, 0.25) samples. Acta Phys. Polon. A. 136(1) (2019). http://hdl.handle.net/11616/24308

  8. N. Kallel, M. Hazzez, N. Ihzaz, Crystal structure, magnetic and electrical properties of half-doped chromium manganite La0.5Sr0.5Mn0.5Cr0.5O3. J. Supercond. Novel Magn. 32(8), 2623–2631 (2019). https://doi.org/10.1007/s10948-019-4997-4

    Article  Google Scholar 

  9. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. 619, 627–633 (2015). https://doi.org/10.1016/j.jallcom.2014.09.078

    Article  Google Scholar 

  10. N. Asmira, N. Ibrahim, Z. Mohamed, A.K. Yahya, Effect of Cr3+ substitution at Mn-site on electrical and magnetic properties of charge ordered Bi0.3Pr0.3Ca0.4MnO3 manganites. Phys. B Condens. Matter 544, 34–46 (2018). https://doi.org/10.1016/j.physb.2018.05.020

    Article  ADS  Google Scholar 

  11. A.A.S. Hassan, W. Khan, S. Husain, P. Dhiman, M. Singh, Investigation of structural, optical, electrical, and magnetic properties of Fe‐doped La0.7Sr0.3MnO3 manganites. Int. J. Appl. Ceram. Technol. 17(5), 2430–2438 (2020). https://doi.org/10.1111/ijac.13540I

    Article  Google Scholar 

  12. Z. Al-Yahmadi, A.M. Gismelseed, F. Al Ma’Mari, A.D. Al-Rawas, S.H. Al-Harthi, A.Y. Yousif, M.T.Z. Myint, Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A= Co, Ni, Zn) perovskite manganites. J. Alloys Compd. 875, 159977 (2021). https://doi.org/10.1016/j.jallcom.2021.159977

    Article  Google Scholar 

  13. M. Chebaane, R. Bellouz, M. Oumezzine, E.K. Hlil, A. Fouzri, Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1−xCuxO3 influence on structural, magnetic and magnetocaloric effects. RSC Adv. 8(13), 7186–7195 (2018). https://doi.org/10.1039/C7RA13244A

    Article  ADS  Google Scholar 

  14. F. Khammassi, J.F. López, W. Cherif, A. Mendoza, S. Lanceros-Méndez, M. Dammak, D. Salazar, Short-range magnetic behavior in manganites La0.93K0.07Mn1-xCuxO3 (0.0≤x ≤0.09) above the Curie temperature. J. Phys. D Appl. Phys. 54(17), 175001 (2021). https://doi.org/10.1088/1361-6463/abde6b

    Article  ADS  Google Scholar 

  15. N. Kumar, H. Rao, A. Kishan, V.P.S. Awana, Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1−xCrxO3 (0≤x≤1) manganites. J. Appl. Phys. 107(8), 083905 (2010). https://doi.org/10.1063/1.3342462

    Article  ADS  Google Scholar 

  16. S.K. Estemirova, V.Y. Mitrofanov, V.K. Karpasyuk, A.G. Badelin, S.A. Uporov, G.A. Kozhina, Effect of Cr doping on the structural magnetic and transport properties of perovskite-like manganites. Solid State Sci. 108, 106433 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106433

    Article  Google Scholar 

  17. M. Chebaane, M. Oumezzine, R. Bellouz, E.K. Hlil, A. Fouzri, Study of critical magnetic behaviour in nanocrystalline La0.65Ce0.05Sr0.3Mn1− xCuxO3 (x= 0, x= 0.05 and x=0.15) prepared by Pechini method. J. Supercond. Novel Magn. 34(1), 193–199 (2021). https://doi.org/10.1007/s10948-020-05568-1

    Article  Google Scholar 

  18. S. Kallel, N. Kallel, O. Peña, M. Oumezzine, Determination of the spontaneous magnetization by analysis of the magnetic entropy change in La0. 40Nd0.30Sr0. 30Mn0.70Cr0.30O3. J. Alloys Compd. 504(1), 12–15 (2010). https://doi.org/10.1016/j.jallcom.2010.05.091

    Article  Google Scholar 

  19. R. Bellouz, M. Oumezzine, E.K. Hlil, Critical phenomena and estimation of the spontaneous magnetization from a mean field analysis of the magnetic entropy change in La0.65Eu0. 05Sr0.3Mn0.95Cr0.05O3. Mater. Res. Bull. 74, 452–458 (2016). https://doi.org/10.1016/j.materresbull.2015.11.015

    Article  Google Scholar 

  20. S. Mahjoub, R. M’nassri, M. Baazaoui, M.M. Nofal, E.M. Dannoun, E.K. Hlil, M. Oumezzine, Critical behaviour and renormalization of magnetic entropy change in La0.65Nd0.05Ba0.3Mn1−xCrxO3 (0≤x≤0.15) ceramics. J. Mater. Sci. Mater. Electron. 32(5), 6094–6109 (2021). https://doi.org/10.1007/s10854-021-05328-4

    Article  Google Scholar 

  21. A. Ashoka, K.S. Bhagyashree, S.V. Bhat, Signatures of field-induced Berezinskii-Kosterlitz-Thouless correlations in the three-dimensional manganite Bi0.5Sr0.5Mn0.9Cr 0.1O3. Phys. Rev. B 102(2), 024429 (2020). https://doi.org/10.1103/PhysRevB.102.024429

    Article  ADS  Google Scholar 

  22. A. Ghasemi, M.R. Loghman Estarki, S. Torkian, G.R. Gordani, Effect of neodymium doping on morphology, phase and magnetic properties of Ni0.7Zn0.3NdxFe2-xO4 ferrite nanoparticles synthesized by complexing sol-gel method. J. Adv. Mater. Eng. (Esteghlal) 39(2), 121–136 (2020)

    Google Scholar 

  23. M.R. Loghman-Estarki, S. Torkian, R.A. Rastabi, A. Ghasemi, Effect of annealing temperature and copper mole ratio on the morphology, structure and magnetic properties of Mg0.5−xCuxZn0.5Fe2O4 nanoparticles prepared by the modified Pechini method. J.f Magn. Magn. Mater. 442, 163–175 (2017). https://doi.org/10.1016/j.jmmm.2017.06.104

    Article  ADS  Google Scholar 

  24. A. Ghasemi, M.R. Loghman-Estarki, S. Torkian, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method. Compos. B Eng. 175, 107179 (2019). https://doi.org/10.1016/j.compositesb.2019.107179

    Article  Google Scholar 

  25. M.H. Ehsani, S. Azizi, Magneto-caloric properties of La0.8-xSmxSr0.2MnO3 (x= 0.0, 0.05, 0.1 and 0.15). Ceram. Int. 47(18), 25304–25313 (2021). https://doi.org/10.1016/j.ceramint.2021.05.252

    Article  Google Scholar 

  26. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites. Phys. B Condens. Matter 404(2), 285–288 (2009). https://doi.org/10.1016/j.physb.2008.10.049

    Article  ADS  Google Scholar 

  27. Z. Mohamed, I.S. Shahron, N. Ibrahim, M.F. Maulud, Influence of ruthenium doping on the crystal structure and magnetic properties of Pr0.67Ba0.33Mn1–xRuxO3 manganites. Curr. Comput.-Aided Drug Des. 10(4), 295 (2020). https://doi.org/10.3390/cryst10040295

    Article  Google Scholar 

  28. A. Gholizadeh, X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure. J. Adv. Mater. Process. 3(3), 71–83 (2015). http://jmatpro.iaun.ac.ir/article_557598_5feb87b7063b6809a493bbc1c7806b3d.pdf

  29. I.Z. Al-Yahmadi, A. Gismelssed, I.A.F. Abdel-Latif, A. Al Ma’Mari, S. Al-Rawas, M. Al Harthi, T.Z. Myint, Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-xSrxMnO3 (0.0≤ x≤ 0.8) synthesized using modified sol-gel method. J. Alloys Compd. 857, 157566 (2021). https://doi.org/10.1016/j.jallcom.2020.157566

    Article  Google Scholar 

  30. A. Selmi, R. M’nassri, W.C. Koubaa, N.C. Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites. J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2014.09.078

    Article  Google Scholar 

  31. Y. Gao, J. Ma, Q. Chen, H. Zhang, L. Kong, K. Dong, W. Zhong, Structural, electrical, and magnetic transport properties of La0.72Ca0.28Mn1−xCrxO3 (0≤ x≤ 0.06) ceramics. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.04.011

    Article  Google Scholar 

  32. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Structural effects on the magnetic and transport properties of perovskite A1−xAxMnO3 (x= 0.25, 0.30). Phys. Rev. B 56(13), 8265 (1997). https://doi.org/10.1103/PhysRevB.56.8265

    Article  ADS  Google Scholar 

  33. L.D. Mendonca, M.S. Murari, M.D. Daivajna, The room temperature inflection of magnetism and anomalous thermoelectric power in lacunar compounds of La0.85−xBixK 0.15MnO3. Phys. Chem. Chem. Phys. 22(35), 19888–19902 (2020). https://doi.org/10.1039/D0CP03074K

    Article  Google Scholar 

  34. J.S. Kouvel, M.E. Fisher, Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136(6A), A1626 (1964). https://doi.org/10.1103/PhysRev.136.A1626

    Article  ADS  Google Scholar 

  35. P. Nisha, S.S. Pillai, M.R. Varma, K.G. Suresh, Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−xCrxO3 (x= 0.1, 0.25). Solid State Sci. 14(1), 40–47 (2012). https://doi.org/10.1016/j.solidstatesciences.2011.10.013

    Article  ADS  Google Scholar 

  36. S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, M. Alhabradi, M. Zaidi, Critical behavior in Fe-doped manganites La0.8Ba0.2Mn1− xFexO3 (x= 0.15 and x= 0.2). J. Alloy. Compd. 580, 558–563 (2013). https://doi.org/10.1016/j.jallcom.2013.06.181

    Article  Google Scholar 

  37. X. Li, C. Jin, H. Chen, F. Lu, Y. Cao, W. Wang, J. Zhao, Magnetic and critical behavior studies of perovskite manganites La0.8-xEuxSr0.2MnO3 (x= 0 and 0.05). J. Mater. Sci. Mater. Electron. 32(9), 11439–11452 (2021). https://doi.org/10.1007/s10854-021-05557-7

    Article  Google Scholar 

  38. Z. Yi, L. Qi, G. Shuotong, Z. Kewei, C. Fenghua, H. Jifan, Critical behavior of the second-order magnetic transition in LaFe11.7-xCoxSi1.3C0.15 alloys. J. Magn. Magn. Mater. 547, 168932 (2022). https://doi.org/10.1016/j.jmmm.2021.168932

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Scientific Research and Technology. This work was also funded by the Basque Government Industry Department within the framework of the ELKARTEK Program—BISUM Project (KK-2021/00089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Khammassi.

Ethics declarations

Conflict of interest

The authors declare having no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khammassi, F., Chérif, W., Mendoza, A. et al. Long- and short-range magnetic interactions in nanocrystalline lightly Cr‑doped manganites. Appl. Phys. A 128, 718 (2022). https://doi.org/10.1007/s00339-022-05853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05853-x

Keywords

Navigation