Skip to main content
Log in

Morphologies of cemented tungsten carbide ablated by pulsed femtosecond laser to manufacture next-generation blades of a cutting tool

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Enhanced cutting tool blades are required to manufacture next-generation small multilayer ceramic capacitors. Cemented tungsten carbide is used as the material for these blades. Recently, laser ablation has been used to fabricate sharp fine blades. In this study, a femtosecond laser was used to precisely and finely machine cemented tungsten carbide. Furthermore, we analyzed the interaction between the femtosecond laser and cemented tungsten carbides depending on the laser fluence. Scanning electron microscopy, confocal laser scanning microscopy, and a two-temperature model were used for the analysis. Based on this analysis, we understood the formation of burrs, nanoparticles, and droplets induced by a femtosecond laser. A laser beam with a diameter of ~ 16 µm was used for irradiation. Moreover, beams with fluence values of 0.24, 1.13, 2.12, and 3.40 J/cm2 were irradiated on the surface of cemented tungsten carbides. The total fluence was the same as that of the absorbed surface. Although the total fluence was the same, burrs, nanoparticles, and droplets were generated at higher fluences. Owing to the higher fluence, the temperature increased, thus increasing the time required to achieve thermal equilibrium between the electron and the lattice. Consequently, we propose the formation process for burrs, nanoparticles, and droplets. In addition, we demonstrate a machining solution without burrs, nanoparticles, or droplets. These results will prove useful across a number of different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Chen, H. Wang, P. Zhao, C. Zhu, Z. Cai, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 4178 (2019). https://doi.org/10.1111/jace.16292

    Article  Google Scholar 

  2. R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, J. Am. Ceram. Soc. 99, 2089 (2016). https://doi.org/10.1111/jace.14212

    Article  Google Scholar 

  3. L. Chen, H. Wang, P. Zhao, Z. Shen, C. Zhu, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 2781 (2019). https://doi.org/10.1111/jace.16157

    Article  Google Scholar 

  4. T. Im, J. Pyo, J.-S. Lee, C.S. Lee, Powder Technol. 382, 118 (2021). https://doi.org/10.1016/j.powtec.2020.12.043

    Article  Google Scholar 

  5. K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, H.W. Jang, J. Mater. Chem. C 7, 9782 (2019). https://doi.org/10.1039/c9tc02921d

    Article  Google Scholar 

  6. X. Wang, H. Zheng, J. Laser Appl. 30, 032203 (2018). https://doi.org/10.2351/1.5040602

    Article  ADS  Google Scholar 

  7. K. Jia, T.E. Fischer, B. Gallois, Nanostruct. Mater. 10, 875 (1998). https://doi.org/10.1016/S0965-9773(98)00123-8

    Article  Google Scholar 

  8. M. Eriksson, M. Radwan, Z. Shen, Int. J. Refract. Met. Hard Mater. 36, 31 (2013). https://doi.org/10.1016/j.ijrmhm.2012.03.007

    Article  Google Scholar 

  9. E. M. Trent, P. K. Wright, E. M. Trent, P. K. Wright, Met. Cut. 175 (2000)

  10. A. Abdullah, M.R. Shabgard, A. Ivanov, M.T. Shervanyi-Tabar, Int. J. Adv. Manuf. Technol. 41, 268 (2009). https://doi.org/10.1007/s00170-008-1476-7

    Article  Google Scholar 

  11. K. Bonny, P. De Baets, W. Ost, S. Huang, J. Vleugels, W. Liu, B. Lauwers, Int. J. Refract. Met. Hard Mater. 27, 350 (2009). https://doi.org/10.1016/j.ijrmhm.2008.09.002

    Article  Google Scholar 

  12. C. Momma, B.N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129, 134 (1996). https://doi.org/10.1016/0030-4018(96)00250-7

    Article  ADS  Google Scholar 

  13. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, S.I. Anisimov, Appl. Phys. A Mater. Sci. Process. 79, 767 (2004). https://doi.org/10.1007/s00339-004-2805-9

    Article  ADS  Google Scholar 

  14. Q. Bian, X. Yu, B. Zhao, Z. Chang, S. Lei, Opt. Laser Technol. 45, 395 (2013). https://doi.org/10.1016/j.optlastec.2012.06.018

    Article  ADS  Google Scholar 

  15. V. Malkhasyan, M. Assoul, G. Monteil, 2016 Conf. Lasers Electro-Optics, CLEO 2016 V, 4 (2016). https://doi.org/10.1364/cleo_at.2016.atu4k.2

  16. H.-Y. Kim, J.-W. Jeon, W. Choi, Y.-G. Shin, S.-Y. Ji, S.-H. Cho, Materials (Basel) 11 (2018). https://doi.org/10.3390/ma11040530

  17. N.M. Bulgakova, Ultrafast Laser Processing, in Fundamentals of Ultrafast Laser Processing. ed. by K. Sugioka, Y. Cheng (Pan Stanford Publishing, Singapore, 2013), pp.122–124

    Google Scholar 

  18. J.P. Calderón Urbina, C. Daniel, C. Emmelmann, Phys. Proc. 41, 752 (2013)

    Article  ADS  Google Scholar 

  19. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  20. Y.G. Shin, W. Choi, J. Choi, S.H. Cho, J. Micro Nano-Manuf. 9, 1 (2021)

    Article  Google Scholar 

  21. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803 (1999). https://doi.org/10.1063/1.370197

    Article  ADS  Google Scholar 

  22. G. Tani, L. Orazi, A. Fortunato, G. Cuccolini, J. Manuf. Sci. Eng. Trans. ASME 130, 0311111 (2008). https://doi.org/10.1115/1.2917326

    Article  Google Scholar 

  23. G. Eberle, K. Wegener, Phys. Proc. 56, 951 (2014). https://doi.org/10.1016/j.phpro.2014.08.115

    Article  ADS  Google Scholar 

  24. C. Cheng, X. Xu, Phys. Rev. B Condens. Matter Mater. Phys. 72, 1 (2005). https://doi.org/10.1103/PhysRevB.72.165415

    Article  Google Scholar 

  25. C.M. Fernandes, A.M.R. Senos, Int. J. Refract. Met. Hard Mater. 29, 405 (2011). https://doi.org/10.1016/j.ijrmhm.2011.02.004

    Article  Google Scholar 

  26. J.P. Colombier, P. Combis, R. Stoian, E. Audouard, Phys. Rev. B Condens. Matter Mater. Phys. 75, 1 (2007). https://doi.org/10.1103/PhysRevB.75.104105

    Article  Google Scholar 

  27. W. Kautek, P. Rudolph, G. Daminelli, J. Krüger, Appl. Phys. A Mater. Sci. Process. 81, 65 (2005). https://doi.org/10.1007/s00339-005-3211-7

    Article  ADS  Google Scholar 

  28. M. Mostafa, M.F. Hameed, S.S. Obayya, J. King Saud Univ. Sci. 31, 472 (2019). https://doi.org/10.1016/j.jksus.2017.07.012

    Article  Google Scholar 

  29. N.M. Bulgakova, A.V. Bulgakov, V. P. Zhukov, W. Marine, A.Y. Vorobyev, C. Guo, High-Power Laser Ablation VII 7005, 70050C (2008). https://doi.org/10.1117/12.782643

  30. J. Perrière, C. Boulmer-Leborgne, R. Benzerga, S. Tricot, J. Phys. D Appl. Phys. 40, 7069 (2007). https://doi.org/10.1088/0022-3727/40/22/031

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hak Cho.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, YG., Ji, SY., Choi, J. et al. Morphologies of cemented tungsten carbide ablated by pulsed femtosecond laser to manufacture next-generation blades of a cutting tool. Appl. Phys. A 128, 828 (2022). https://doi.org/10.1007/s00339-022-05945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05945-8

Keywords

Navigation