Skip to main content
Log in

Structural and magnetic properties of Ca1-xLaxFe0.5Mn0.5O3-δ (0.05 ≤ x ≤ 0.15) perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the impact of La doping on structural and magnetic properties of Ca1-xLaxFe0.5Mn0.5O3-δ (0.05 ≤ x ≤ 0.15) elaborated using the solid-state method has been investigated in details by X-ray diffraction and magnetic measurements. Structural analysis showed that all the phases crystallize in the cubic system with a Pm-3m space group. The electron density (ED) study revealed that Mn/Fe-O and Ca/La-O form partial covalent and ionic bonds, respectively, in the unit cell. Importantly, the ED plots show also the formation of an alternate ordered arrangement of oxygen elements and their vacancies. The magnetic study revealed that all our investigated phases exhibit a paramagnetic (PM)-antiferromagnetic (AFM) transition. The decrease in Neel temperature (TN) with increasing x can be explained by the enhancement of ferromagnetic (FM) magnetic interactions due to La doping. Non-null magnetization and the magnetic hysteresis loop at room temperature confirm the presence of weak ferromagnetism in the PM region. These materials also have complex magnetic responses below TN, which are related to the formation of a variety of magnetic exchange interactions within the system, including AFM, FM and ferrimagnetic (FiM) ordering. As a result, exchange coupling between FM/FiM moments and the antiphase boundaries of AFM explains the observed exchange bias in the compounds. Given the practical applications of perovskites, the current observation of the exchange bias effect and ambient temperature ferromagnetism in these materials may be of major technological significance.

Graphical Abstract

Article Highlights

  • Ca1-xLaxFe0.5Mn0.5O3-δ (x = 0.05, 0.1 and 0.15) ceramics are elaborated.

  • XRD patterns of all compounds are indexed in the Pm-3 m space group.

  • An alternate arrangement of oxygen elements and their vacancies.

  • Magnetic measurements indicate the formation of weak ferromagnetism in the paramagnetic (PM) region in the system.

  • All the samples exhibit PM-AFM phase transition and the Neel temperature (TN) decreases with Ca content.

  • Complex magnetic responses below TN induced the exchange bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Xu, M. Meier, P. Das, M.R. Koblischka, U. Hartmann, Perovskite manganites: potential materials for magnetic cooling at or near room temperature. Cryst. Eng. 5, 383–389 (2002). https://doi.org/10.1016/S1463-0184(02)00049-7

    Article  Google Scholar 

  2. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in manganite above room temperature. J. Magn. Magn. Mater. 323, 2214–2218 (2011). https://doi.org/10.1016/j.jmmm.2011.03.036

    Article  ADS  Google Scholar 

  3. M.D. Daivajna, A. Rao, G.S. Okram, Electrical, thermal and magnetic studies on Bi-substituted LSMO manganites. J. Magn. Magn. Mater. 388, 90–95 (2015). https://doi.org/10.1016/j.jmmm.2015.04.025

    Article  ADS  Google Scholar 

  4. Y. Yevilevich, L. Vradman, J. Zana, I.A. Weinstock, M. Herskowitz, Investigation into La(Fe/Mn)O3 perovskites formation over time during molten salt synthesis. J. Inorg. Chem. 61(17), 6367–6375 (2022). https://doi.org/10.1021/acs.inorgchem.1c03280

    Article  Google Scholar 

  5. Y. Meng, H. Fan, Z. Lu, X. Zhong, J. Lu, Y. Ou, L. Zhou, Mn4+-doped La(CaZr)0.5O3 phosphors for plant grow LEDs: Ab initio site occupy and photoluminescence properties. J. Mater. Res. Bull. 147, 111610 (2022)

    Article  Google Scholar 

  6. N. Nath, S. Chakroborty, P. Panda, K. Pal, High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top Catal. (2022). https://doi.org/10.1007/s11244-022-01623-4

    Article  Google Scholar 

  7. S. Wang, P. Han, Y. Zhao, W. Sun, R. Wang, X. Jiang, C. Wu, C. Sun, H. Wei, Oxygen-vacancy-mediated LaFe1-xMnxO3-δ perovskite nanocatalysts for degradation of organic pollutants through enhanced surface ozone adsoption and metal doping effects. Nanoscale 13(30), 12874–12884 (2021). https://doi.org/10.1039/D1NR03055H

    Article  Google Scholar 

  8. K. Pal, A.A. Aljabali, S. Kralj, S. Thomas, F. Gomes de Souzaf, Graphene-assembly liquid crystalline and nanopolymer hybridization: a review on switchable device implementations. Chemosphere 263, 128104 (2021). https://doi.org/10.1016/j.chemosphere.2020.128104

    Article  ADS  Google Scholar 

  9. K. Pal, A. Si, G.S. El-Sayyad, M.A. Elkodous, R. Kumar, A.I. El-Batal, S. Kralj, S. Thomas, Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. 46(5), 385–449 (2021). https://doi.org/10.1080/10408436.2020.1805295

    Article  ADS  Google Scholar 

  10. T. Ishihara, S. Wang, K.-T. Wu, Highly active oxide cathode of La(Sr)Fe(Mn)O3 for intermediate temperature CO2 and CO2-H2O co-electrolysis using LSGM electrolyte. Solid State Ion. 299, 60–63 (2017). https://doi.org/10.1016/j.ssi.2016.09.013

    Article  Google Scholar 

  11. P. Lalitha, A. Sinthiya, S. Vallinayagam, K. Pal, Growth dynamics and spectroscopic characterization strategies of ‘L-proline’ doped potassium hydrogen phthalate single crystal structural avenue. J. Mol Struct. 1249, 131647 (2022)

    Article  Google Scholar 

  12. O.M. Ama, U.O. Aigbe, W.W. Anku, O.A. Osibote, K. Pal, Degradation of methylene blue dye and bisphenol-a using expanded graphene-polypyrrole-magnetite nanocomposite. Top Catal. (2022). https://doi.org/10.1007/s11244-022-01626-1

    Article  Google Scholar 

  13. Y. Zhang, J. Zhang, B. Chen, J. Zhang, D. Fu, W. Wang, Magnetic field effect on the dielectric behavior in SrRuO3/Ba(Zr0.3Ti0.7)O3/FeMn/Ba(Zr0.3Ti0.7)O3/n-Si heterostructure. Thin Solid Films 749, 139182 (2022). https://doi.org/10.1016/j.tsf.2022.139182

    Article  ADS  Google Scholar 

  14. M. Rosić, M. Logar, J. Zagorac, A. Devečerski, A. Egelja, V. Kusigerski, V. Spasojević, B. Matović, Investigation of the structure and the magnetic behavior of nanostructure Ca1-xGdxMnO3 (x = 0.05; 0.1; 0.15; 0.2) obtained by modified glycine nitrate procedure. J. Ceram. Int. 39, 1853–1861 (2013). https://doi.org/10.1016/j.ceramint.2012.08.033

    Article  Google Scholar 

  15. J.J. Neumeier, D.H. Goodwin, Unusually strong ferromagnetic correlations in La-doped CaMnO3. J. Appl. Phys. 85, 5591 (1999). https://doi.org/10.1063/1.369809

    Article  ADS  Google Scholar 

  16. A. Bhaskar, C.J. Liu, J.J. Yuan, Thermoelectric properties of Ca1-xGdxMnO3-δ (0.00, 0.02, and 0.05) systems. Sci. World J. (2012). https://doi.org/10.1100/2012/1496.70

    Article  Google Scholar 

  17. Y. Dai, H. Li, Y. Wang, K. Zhong, H. Zhang, J. Yu, Z. Huang, J. Yan, L. Huang, X. Liu, Y. Lu, T. Xu, M. Su, Zn-doped CaFeO3 perovskite-derived high performed catalyst on oxygen reduction reaction in microbial fuel cells. J. Power Sources. 489, 229498 (2021). https://doi.org/10.1016/j.jpowsour.2021.229498

    Article  Google Scholar 

  18. Q. Sun, Z. Yang, The charge disproportionation and electric properties of perovskite CaFe1-xCoxO3. Results Phys. 24, 104198 (2021). https://doi.org/10.1016/j.rinp.2021.104198

    Article  Google Scholar 

  19. M. Tadić, D. Marković, M. Panjan, V. Spasojević, Solution combustion synthesis method and magnetic properties of synthesized polycrystalline calcium manganite CaMnO3-δ powder. J. Ceram. Int. 42, 19365–19371 (2016)

    Article  Google Scholar 

  20. P.M. Woodward, D.E. Cox, E. Moshopoulou, A.W. Sleight, S. Morimoto, Structural studies of charge disproportionation and magnetic order in CaFeO3. J. Phys. Rev. B. 62(2), 844 (2000). https://doi.org/10.1103/PhysRevB.62.844

    Article  ADS  Google Scholar 

  21. M. Takano, N. Nakanishi, Y. Takeda, S. Naka, T. Takada, Charge disproportionation in CaFeO3 studied with the Mössbauer effect. Mater. Res. Bull. 12, 923–928 (1977). https://doi.org/10.1016/0025-5408(77)90104-0

    Article  Google Scholar 

  22. B. Ghosh, K. Bagani, M.K. Ray, M. Sardar, S. Banerjee, Re-entrant magnetic phases in CaFeO3 nanoparticle. J. AIP Proc. 1536, 943–944 (2013)

    ADS  Google Scholar 

  23. Y. Hosaka, N. Ichikawa, T. Saito, J.P. Attfield, Y. Shimakawa, Charge and spin order in the perovskite CaFe0.5Mn0.5O3: Charge disproportionation behavior of randomly arranged Fe4+. J. Phys. Rev. B. 94, 104429 (2016)

    Article  ADS  Google Scholar 

  24. N.N. Loshkareva, A.V. Korolev, N.I. Solin, E.V. Mostovshchikova, S.V. Naumov, N.V. Kostromitina, A.M. Balbashov, Magnetic, electrical and optical properties of Ca1-xCexMnO3 (x ≤ 0.12) single crystals. J. Exp. Theor. Phys. 108, 88–97 (2009). https://doi.org/10.1134/S1063776109010129

    Article  ADS  Google Scholar 

  25. J. Zagorac, S. Bošković, B. Matović, B. Babić-Stojić, Structure and magnetic investigations of Ca1-xYxMnO3 (x=0, 0.1, 0.2, 0.3) and Mn4+/Mn3+ relation analysis. Sci. Sinter. 42, 221–232 (2010). https://doi.org/10.2298/SOS1002221Z

    Article  Google Scholar 

  26. C. Chiorescu, J.J. Neumeier, J.L. Cohn, Cohn, Magnetic inhomogeneity and magnetotransport in electron-doped Ca1-xLaxMnO3 (0 ≤ x ≤ 0.10). Phys. Rev. B. 73, 014406 (2006). https://doi.org/10.1103/PhysRevB.73.014406

    Article  ADS  Google Scholar 

  27. B.T. Cong, T. Tsuji, P.X. Thao, P.Q. Thanh, Y. Yamamura, Physica B. 352, 18–23 (2004). https://doi.org/10.1016/j.physb.2004.06.033

    Article  ADS  Google Scholar 

  28. C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic phase diagrams of Ln1KxAxMnO3 manganites. Phys. Rev. B. 60, 12191 (1999). https://doi.org/10.1103/PhysRevB.60.12191

    Article  ADS  Google Scholar 

  29. T. Esaka, M. Kamata, M. Ohnishi, Control of oxygen deficiency in Cal-xLaxMnO3-δ cathodic properties in alkaline solution. J. Appl. Electrochem. 26, 439–442 (1996). https://doi.org/10.1007/BF00251330

    Article  Google Scholar 

  30. T. Esaka, H. Morimoto, H. Iwahara, Nonstoichiometry in perovskite-type oxide Ca1-xCexMnO3-δ and its properties in alkaline solution. J. Appl. Electrochem. 22, 821–824 (1992). https://doi.org/10.1007/BF01023724

    Article  Google Scholar 

  31. J. Zagorac, S. Bošković, B. Matović, B. Babić-Stojić, Structure and magnetic investigations of Ca1-xYxMnO3 ( x = 0, 0.1, 0.2, 0.3) and Mn4+/Mn3+ relation analysis. Sci. Sinter. 42, 221–232 (2010). https://doi.org/10.2298/SOS1002221Z

    Article  Google Scholar 

  32. G.L. Liu, J.S. Zhou, J.B. Goodenough, Phys. Rev. B. 64, 144414 (2001). https://doi.org/10.1103/PhysRevB.64.144414

    Article  ADS  Google Scholar 

  33. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  34. F. Khammassi, W. Cherif, A.J.M. Sales, K. Riahi, M.P.F. Graça, M. Dammak, Conduction Mechanism and Dielectric Properties of Polycrystalline La0.53Ca0.47Mn0.5Cr0.5O3. J. Supercond. Nov. Magn. 34(2), 497–505 (2021). https://doi.org/10.1007/s10948-020-05697-7

    Article  Google Scholar 

  35. M. Khlifi, E. Dhahri, E.K. Hlil, Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2-xxMnO3 post-annealed at 800°C. J. Alloys Compd. 587, 771–777 (2014). 1016/j.jallcom.2013.11.012

  36. R. Rozilah, N. Ibrahim, A.K. Yahya, Inducement of ferromagnetic-metallic phase and magnetoresistance behavior in charged ordered monovalent-doped Pr0.75Na0.25MnO3 manganite by Ni substitution. J. Solid State Sci. 87, 64–80 (2019)

    Article  ADS  Google Scholar 

  37. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  38. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149, 1919–1923 (2009). https://doi.org/10.1016/j.ssc.2009.07.043

    Article  ADS  Google Scholar 

  39. A. Gholizadeh, X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure. J. Adv. Mater. Proc. 3, 71–83 (2015)

    Google Scholar 

  40. H. Shashidharagowda, S.N. Mathad, M.B. Abbigeri, Structural, vibrational and magnetic characterization of copper doped CoMn2O4 nano-particles synthesized by chemical route. Sci. Sinter. 53, 429–444 (2021). https://doi.org/10.2298/SOS2104429S

    Article  Google Scholar 

  41. A. Hadded, J. Massoudi, E. Dhahri, K. Khirouni, B.F.O. Costa, Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles. RSC Adv. 10, 42542 (2020). https://doi.org/10.1039/D0RA08405K

    Article  ADS  Google Scholar 

  42. Y.M. Abbas, A.B. Mansour, S.E. Ali, A.H. Ibrahim, Investigation of structural and magnetic properties of multiferroic La1-xYxFeO3 Perovskites, prepared by citrate auto-combustion technique. J. Magn. Magn. Mater. 482, 66–74 (2019). https://doi.org/10.1016/j.jmmm.2019.03.056

    Article  ADS  Google Scholar 

  43. M.E. Abrishami, M. Risch, J. Scholz, V. Roddatis, N. Osterthun, Ch. Jooss, Oxygen evolution at manganite perovskite Ruddlesden-Popper type particles: trends of activity on structure, valence and covalence. Materials. 9(11), 921 (2016). https://doi.org/10.3390/ma9110921

    Article  ADS  Google Scholar 

  44. S. Jaiswar, K.D. Mandal, Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J. Phys. Chem. C. 121, 19586–19601 (2017). https://doi.org/10.1021/acs.jpcc.7b05415

    Article  Google Scholar 

  45. I.A. Leonidov, E.I. Konstantinova, M.V. Patrakeev, V.L. Kozhevnikov, Thermodynamic Properties of Nonstoichiometric Oxygen in Manganite Ca0.9Pr0.1MnO3-δ. Russ. J. Phys. Chem. A. 90, 2123–2128 (2016)

    Article  Google Scholar 

  46. H. Wu, Z. Pei, W. Xia, Y. Lu, K. Leng, X. Zhu, Structural, magnetic, dielectric and optical properties of double perovskite Bi2FeCrO6 ceramics synthesized under high press. J. Alloy. Comp. 819, 153007 (2020). https://doi.org/10.1016/j.jallcom.2019.153007

    Article  Google Scholar 

  47. N. Thenmozhi, S. Sasikumar, S. Sonai, R. Saravanan, Electronic structure and chemical bonding in La1-xSrxMnO3 perovskite ceramics. Mater. Res. Express. 4, 046103 (2017). https://doi.org/10.1088/2053-1591/aa6abf

    Article  ADS  Google Scholar 

  48. S. Zouari, M.L. Kahn, M. Ellouze, F. Elhalouani, Elhalouani, Effect of iron substitution on the physico-chemical properties of Pr0.6La0.1Ba0.3Mn1-xFexO3 manganites (with 0 ≤ x ≤ 0.3). Eur. Phys. J. Plus. 130, 1–15 (2015). https://doi.org/10.1140/epjp/i2015-15177-2

    Article  Google Scholar 

  49. N. Geetha, V.S. Kumar, D. Prakash, Synthesis and characterization of LaMn1-xFexO3 (x = 0, 0.1, 0.2) by coprecipitation route. J. Phys. Chem. Biophys. 8, 273–278 (2018). https://doi.org/10.4172/2161-0398.1000273

    Article  Google Scholar 

  50. A. Nasri, S. Zouari, M. Ellouze, J.L. Rehspringer, A.-F. Lehlooh, F. Elhalouani, Structural and magnetic properties of Pr0. 6Sr0. 4Mn1-x FexO3 (0 ≤ x ≤ 0.3) manganites oxide prepared by the ball milling method. J. Supercond Nov Magn. 27(2), 443–451 (2014). https://doi.org/10.1007/s10948-013-2282-5

    Article  Google Scholar 

  51. R. Selmi, W. Cherif, L. Fernandez Barquín, M. de la Fuente Rodríguez, L. Ktari, Structure and spin glass behavior in La0.77Mg0.23-xxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloy. Comp.738, 528–539 (2018). https://doi.org/10.1016/j.jallcom.2017.12.189

  52. D. Kumar, A. Banerjee, Coexistence of interacting ferromagnetic clusters and small antiferromagnetic clusters in La0.5Ba0.5CoO3. J. Phys. Condens. Matter. 25, 216005 (2013). https://doi.org/10.1088/0953-8984/25/21/216005

    Article  ADS  Google Scholar 

  53. A. Harbi, H. Moutaabbid, Y. Li, C. Renero-Lecuna, M. Fialin, Y. Le Godec, S. Benmokhtar, M. Moutaabbid, The effect of cation disorder on magnetic properties of new double perovskites La2NixCo1-xMnO6 (x = 0.2–0.8). J. Alloy. Comp. 778, 105–114 (2019). https://doi.org/10.1016/j.jallcom.2018.10.360

    Article  Google Scholar 

  54. R.C. Sahoo, D. Paladhi, P. Dasgupta, A. Poddar, R. Singh, A. Das, T.K. Nath, Antisite -disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite. J. Magn. Magn. Mater. 428, 86–91 (2017)

    Article  ADS  Google Scholar 

  55. M. Ziese, AC-susceptibility study of La0.7Ca0.3MnO3 films on LaAlO3 and SrTiO3. J. Magn. Magn. Mater. 320, 263–269 (2008). https://doi.org/10.1016/j.jmmm.2007.05.040

    Article  ADS  Google Scholar 

  56. J. Khelifi, A. Tozri, F. Issaoui, E. Dhahri, E.K. Hlil, The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1-xNdx)2/3(Ca1-ySry)1/3MnO3 oxides. J. Ceram. Int. 40, 1641–1649 (2014). https://doi.org/10.1016/j.ceramint.2013.07.055

    Article  Google Scholar 

  57. S. Banik, I. Das, Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems. J. Alloys Compd. 742, 248–255 (2018). https://doi.org/10.1016/j.jallcom.2018.01.295

    Article  Google Scholar 

  58. A. Marzouki-Ajmi, M. Mansouri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, Magnetic and Magnetocaloric properties of Vanadium-doped manganites La0.65Ca0.35Mn1-xVxO3 (0 ≤ x ≤ 0.5). J. Magn. Magn. Mater. 433, 209–215 (2017). https://doi.org/10.1016/j.jmmm.2017.01.097

    Article  ADS  Google Scholar 

  59. J.A.M. Roosmalen, E.H.P. Cordfunke, A new defect model to describe the oxygen deficiency in perovskite-type oxides. J. Solid State Chem. 93, 212–219 (1991). https://doi.org/10.1016/0022-4596(91)90290-X

    Article  ADS  Google Scholar 

  60. H.M. Usama, A. Sharif, M.A. Zubair, M.A. Gafur, S.M. Hoque, Structural transition and its effect in La, Zr co-substituted mono-domain BiFeO3. J. Appl. Phys. 120, 214106 (2016). https://doi.org/10.1063/1.4969047

    Article  ADS  Google Scholar 

  61. V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, C. Martin, D. Mogilyansky, G. Jung, G. Gorodetsky, Evolution of magnetic properties of CaMn1-x NbxO3 with Nb-doping. J. Phys. D Appl. Phys. 48, 325003 (2015). https://doi.org/10.1088/0022-3727/48/32/325003

    Article  Google Scholar 

  62. T. Sarkar, S. Elizabeth, P.S. AnilKumar, Electron doping induced exchange bias and cluster glass magnetism in multiferroic Sc0.8Zr0.2MnO3. J. Magn. Magn. Mater. 466, 225–233 (2018). https://doi.org/10.1088/0022-3727/48/32/325003

    Article  ADS  Google Scholar 

  63. S. Ghosh, A. Kumar, A. Pal, P. Singh, P. Gupta, Kh. Anand, U.K. Gautam, A.K. Ghosh, S. Chatterjee, Existence of exchange bias and Griffith phase in (Tb1-xCex)MnO3. J. Magn. Magn. Mater. 500, 166261 (2020). https://doi.org/10.1016/j.jmmm.2019.166261

    Article  Google Scholar 

  64. J. Barman, S. Ravi, Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr2O4. J. Mater Sci 53, 7187–7198 (2018). https://doi.org/10.1007/s10853-018-2073-2

    Article  ADS  Google Scholar 

  65. R.C. Sahoo, D. Paladhi, P. Dasgupta, A. Poddar, R. Singh, A. Das, T.K. Nath, Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite. J. Magn. Magn. Mater. 428, 86–91 (2017). https://doi.org/10.1016/j.jmmm.2016.12.018

    Article  ADS  Google Scholar 

  66. K. Laajimi, M. Khlifi, E.K. Hlil, M.H. Gazzah, J. Dhahri, Enhancement of magnetocaloric effect by Nickel substitution in La0. 67Ca0. 33Mn0. 98Ni0. 02O3 manganite oxide. J. Magn. Magn. Mater. 491, 165625 (2019). https://doi.org/10.1016/j.jmmm.2019.165625

    Article  Google Scholar 

  67. S. Thankachan, B.P. Jacob, S. Xavier, E.M. Mohammed, Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Phys. Scr. 87, 1–7 (2013). https://doi.org/10.1088/0031-8949/87/02/025701

    Article  Google Scholar 

Download references

Acknowledgements

This paper within the framework of collaboration is supported by the Tunisian Ministry of Higher Education and Scientific Research and the Portuguese Ministry of Science, Technology and Higher Education. The authors acknowledge the i3N (UID/CTM/50025/2020) and CICECO-Aveiro Institute of Materials (UID/CTM/50011/2020), financed by FCT/MEC and FEDER under the PT2020 Partnership Agreement. This work is also funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selmi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, R., Cherif, W., Khammassi, F. et al. Structural and magnetic properties of Ca1-xLaxFe0.5Mn0.5O3-δ (0.05 ≤ x ≤ 0.15) perovskites. Appl. Phys. A 128, 847 (2022). https://doi.org/10.1007/s00339-022-06001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06001-1

Keywords

Navigation