Skip to main content

Advertisement

Log in

Structural characteristics and thermal stability of Pt-Ni nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Monte Carlo and molecular dynamics simulations were carried out for the Pt-Ni nanoparticles using the angular-dependent potential. The effects of composition, size and temperature on the structural characteristics and thermal stability of Pt-Ni nanoparticles were systematically studied. It is found that with the increase of x, the Pt concentration in each shell of PtxNi1-x nanoparticles gradually increases. The Pt atoms are dispersed, and compositional oscillations occur between the shells. The result of element segregation depends on the combined action of bond energy, strain energy, surface energy and interface energy. Pt content on the surface declines with the increase of size or temperature. With the rise of x, the melting point of PtxNi1-x nanoparticles with the same size and shape first ascends, then descends around x = 0.125, and then rises again around x = 0.5. The effect of Pt doping on the catalytic performance of Ni nanoparticles in methane dry reforming was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. M.-S. Fan, A.Z. Abdullah, S. Bhatia, Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem 1, 192–208 (2009). https://doi.org/10.1002/cctc.200900025

    Article  Google Scholar 

  2. A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew. Sust. Energ. Rev. 108, 175–193 (2019). https://doi.org/10.1016/j.rser.2019.03.054

    Article  Google Scholar 

  3. Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18, 3117–3134 (2017). https://doi.org/10.1002/cphc.201700529

    Article  Google Scholar 

  4. P. Ferreira-Aparicio, A. Guerrero-Ruiz, I. Rodrı́guez-Ramos, Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl. Catal. A-Gen. 170, 177–187 (1998). https://doi.org/10.1016/S0926-860X(98)00048-9

    Article  Google Scholar 

  5. S. Barama, C. Dupeyrat-Batiot, M. Capron, E. Bordes-Richard, O. Bakhti-Mohammedi, Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal. Today 141, 385–392 (2009). https://doi.org/10.1016/j.cattod.2008.06.025

    Article  Google Scholar 

  6. Z. Wang, X.M. Cao, J. Zhu, P. Hu, Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. J. Catal. 311, 469–480 (2014). https://doi.org/10.1016/j.jcat.2013.12.015

    Article  Google Scholar 

  7. D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837 (2014). https://doi.org/10.1039/c3cs60395d

    Article  Google Scholar 

  8. H. Cheng, S. Feng, W. Tao, X. Lu, W. Yao, G. Li, Z. Zhou, Effects of noble metal-doping on Ni/La2O3–ZrO2 catalysts for dry reforming of coke oven gas. Int. J. Hydrogen Energ. 39, 12604–12612 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.120

    Article  Google Scholar 

  9. S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energ. Environ. Sci. 9, 3314–3347 (2016). https://doi.org/10.1039/C6EE02002J

    Article  Google Scholar 

  10. O. Karaagac, B. Bilir, H. Kockar, Superparamagnetic cobalt ferrite nanoparticles: effect of temperature and base concentration. J. Supercond. Novel Magn. 28, 1021–1027 (2015). https://doi.org/10.1007/s10948-014-2798-3

    Article  Google Scholar 

  11. C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J. Magn. Magn. Mater. 474, 282–286 (2019)

    Article  ADS  Google Scholar 

  12. O. Karaagac, H. Köçkar, The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci. Mater. Electron. 31, 2567–2574 (2020). https://doi.org/10.1007/s10854-019-02795-8

    Article  Google Scholar 

  13. J.E. Manikanta, B. NagaRaju, B.S.S. Phanisankar, M. Rajesh, T.K. Kotteda, in Recent advances in mechanical engineering. ed. by G. Manik, S. Kalia, O.P. Verma, T.K. Sharma (Springer Nature Singapore, Singapore, 2023), pp.147–156

    Chapter  Google Scholar 

  14. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)

    Article  Google Scholar 

  15. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 Nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym Mater. 29, 203–212 (2019). https://doi.org/10.1007/s10904-018-0979-4

    Article  Google Scholar 

  16. K. Omri, F. Alharbi, Microstructure and luminescence thermometry of transparent Mn–SZO glass ceramics with highly efficient Mn2+. J. Mater. Sci. Mater. Electron. 32, 12466–12474 (2021). https://doi.org/10.1007/s10854-021-05880-z

    Article  Google Scholar 

  17. K. Omri, N. Alonizan, Enhanced photocatalytic performance and impact of annealing temperature on TiO2/Gd2O3: Fe composite. J. Mater. Sci. Mater. Electron. 33, 15448–15459 (2022). https://doi.org/10.1007/s10854-022-08451-y

    Article  Google Scholar 

  18. N.A.K. Aramouni, J. Zeaiter, W. Kwapinski, M.N. Ahmad, Thermodynamic analysis of methane dry reforming: effect of the catalyst particle size on carbon formation. Energ. Convers. Manage. 150, 614–622 (2017). https://doi.org/10.1016/j.enconman.2017.08.056

    Article  Google Scholar 

  19. J.W. Han, J.S. Park, M.S. Choi, H. Lee, Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl. Catal. B-Environ. 203, 625–632 (2017). https://doi.org/10.1016/j.apcatb.2016.10.069

    Article  Google Scholar 

  20. M. García-Diéguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia, L.J. Alemany, Improved Pt-Ni nanocatalysts for dry reforming of methane. Appl. Catal. A-Gen. 377, 191–199 (2010). https://doi.org/10.1016/j.apcata.2010.01.038

    Article  Google Scholar 

  21. P. Jagódka, K. Matus, M. Sobota, A. Łamacz, Dry reforming of methane over carbon fibre-supported CeZrO2, Ni-CeZrO2, Pt-CeZrO2 and Pt-Ni-CeZrO2 catalysts. Catalysts 11, 563 (2021). https://doi.org/10.3390/catal11050563

    Article  Google Scholar 

  22. J. Niu, Y. Wang, S.E. Liland, S.K. Regli, J. Yang, K.R. Rout, J. Luo, M. Rønning, J. Ran, D. Chen, Unraveling enhanced activity, selectivity, and coke resistance of Pt–Ni bimetallic clusters in dry reforming. ACS Catal. 11, 2398–2411 (2021). https://doi.org/10.1021/acscatal.0c04429

    Article  Google Scholar 

  23. J. Niu, J. Ran, D. Chen, Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(1 1 1) and Pt(1 1 1). Appl. Surf. Sci. 513, 145840 (2020). https://doi.org/10.1016/j.apsusc.2020.145840

    Article  Google Scholar 

  24. Z. Shang, S. Li, L. Li, G. Liu, X. Liang, Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl. Catal. B-Environ. 201, 302–309 (2017). https://doi.org/10.1016/j.apcatb.2016.08.019

    Article  Google Scholar 

  25. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953). https://doi.org/10.1063/1.1699114

    Article  ADS  MATH  Google Scholar 

  26. G. Wang, Y.-S. Xu, P. Qian, Y.-J. Su, The effects of size and shape on the structural and thermal stability of platinum nanoparticles. Comput. Mater. Sci. 169, 109090 (2019). https://doi.org/10.1016/j.commatsci.2019.109090

    Article  Google Scholar 

  27. G. Wang, Y. Xu, P. Qian, Y. Su, Vacancy concentration of films and nanoparticles. Comput. Mater. Sci. 173, 109416 (2020). https://doi.org/10.1016/j.commatsci.2019.109416

    Article  Google Scholar 

  28. Y. Xu, G. Wang, P. Qian, Y. Su, Element segregation and thermal stability of Ni–Rh nanoparticles. J. Solid State Chem. 311, 123096 (2022). https://doi.org/10.1016/j.jssc.2022.123096

    Article  Google Scholar 

  29. J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, B.-J. Lee, Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al Co, Cu, Mo, Ni, Ti, V) binary systems. Calphad 59, 131–141 (2017). https://doi.org/10.1016/j.calphad.2017.09.005

    Article  Google Scholar 

  30. R.R. Hultgren, Selected values of the thermodynamic properties of binary alloys, American Society for Metals, New York, 1973

  31. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169

    Article  ADS  Google Scholar 

  33. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  ADS  Google Scholar 

  34. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  35. J. Tang, L. Deng, S. Xiao, H. Deng, X. Zhang, W. Hu, Chemical ordering and surface segregation in Cu–Pt nanoalloys: the synergetic roles in the formation of multishell structures. J. Phys. Chem. C 119, 21515–21527 (2015). https://doi.org/10.1021/acs.jpcc.5b06145

    Article  Google Scholar 

  36. L. Deng, X. Liu, X. Zhang, L. Wang, W. Li, M. Song, J. Tang, H. Deng, S. Xiao, W. Hu, Intrinsic strain-induced segregation in multiply twinned Cu–Pt icosahedra. Phys. Chem. Chem. Phys. 21, 4802–4809 (2019). https://doi.org/10.1039/C8CP06327C

    Article  Google Scholar 

  37. G. Wang, Y. Xu, P. Qian, Y. Su, ADP potential for the Au-Rh system and its application in element segregation of nanoparticles. Comput. Mater. Sci. 186, 110002 (2021). https://doi.org/10.1016/j.commatsci.2020.110002

    Article  Google Scholar 

  38. Y. Xu, G. Wang, P. Qian, Y. Su, Element segregation and thermal stability of Ni–Pd nanoparticles. J. Mater. Sci. 57, 7384–7399 (2022). https://doi.org/10.1007/s10853-022-07118-7

    Article  ADS  Google Scholar 

  39. A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 229, 80–107 (2016). https://doi.org/10.1016/j.cis.2015.12.008

    Article  Google Scholar 

  40. M. Cui, H. Lu, H. Jiang, Z. Cao, X. Meng, Phase diagram of continuous binary nanoalloys: size, shape, and segregation effects. Sci. Rep. 7, 41990 (2017). https://doi.org/10.1038/srep41990

    Article  ADS  Google Scholar 

  41. W.R. Tyson, W.A. Miller, Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf. Sci. 62, 267–276 (1977). https://doi.org/10.1016/0039-6028(77)90442-3

    Article  ADS  Google Scholar 

  42. C. Kittel, Introduction to solid state physics, 8th edn. (John Wiley & Sons, New York, 2005)

    MATH  Google Scholar 

  43. P. Gao, Q. Wu, X. Li, H. Ma, H. Zhang, A.A. Volinsky, L. Qiao, Y. Su, Size-dependent concentrations of thermal vacancies in solid films. Phys. Chem. Chem. Phys. 18, 22661–22667 (2016). https://doi.org/10.1039/C6CP03419E

    Article  Google Scholar 

  44. L. Deng, H. Deng, S. Xiao, J. Tang, W. Hu, Morphology, dimension, and composition dependence of thermodynamically preferred atomic arrangements in Ag–Pt nanoalloys. Faraday Discuss. 162, 293–306 (2013). https://doi.org/10.1039/C3FD20138D

    Article  ADS  Google Scholar 

  45. J. Tang, L. Deng, H. Deng, S. Xiao, X. Zhang, W. Hu, Surface segregation and chemical ordering patterns of Ag–Pd nanoalloys: energetic factors, nanoscale effects, and catalytic implication. J. Phys. Chem. C 118, 27850–27860 (2014). https://doi.org/10.1021/jp507710k

    Article  Google Scholar 

  46. Q. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001

    Article  Google Scholar 

  47. Z.L. Wang, J.M. Petroski, T.C. Green, M.A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145–6151 (1998). https://doi.org/10.1021/jp981594j

    Article  Google Scholar 

  48. F. Baletto, R. Ferrando, Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005). https://doi.org/10.1103/revmodphys.77.371

    Article  ADS  Google Scholar 

  49. A.T. Dinsdale, SGTE data for pure elements. Calphad 15, 317–425 (1991). https://doi.org/10.1007/10655491_1

    Article  Google Scholar 

  50. F. Predel, Phase equilibria, crystallographic and thermodynamic data of binary alloys, 1st edn. (Springer, Berlin Heidelberg, 2016)

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by the Dean’s fund of TianJin College, University of Science and Technology Beijing (Grant No. 2020YZJJ-KJ01) and the National Key Research and Development Program of China (Grant No. 2021YFB3802100).

Funding

Dean’s fund of TianJin College, University of Science and Technology Beijing, 2020YZJJ-KJ01, Gang Wang, National Key Research and Development Program of China, 2021YFB3802100, Ping Qian.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yishuang Xu or Ping Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 1925 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xu, Y. & Qian, P. Structural characteristics and thermal stability of Pt-Ni nanoparticles. Appl. Phys. A 129, 105 (2023). https://doi.org/10.1007/s00339-022-06381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06381-4

Keywords

Navigation