Skip to main content
Log in

Antibacterial activity studies of ZnO nanostructures with different morphologies against E. coli and S. aureus

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the current study, three different ZnO nanostructures (Z1, Z2, and Z3) were synthesized using solid-state thermal decomposition, homogeneous precipitation, and wet chemical methods. The nanostructures were characterized using different techniques. Formation of ZnO nanostructures with wurtzite structure is demonstrated by powder XRD. FESEM and TEM studies show rod-like morphology of Z1 and Z2 nanostructures, while the morphology of Z3 nanostructures is hierarchical assembly consisting of nanorods. From TEM studies, average length of rods in Z1 and Z2 nanostructures are about 0.33 and 1.43 µm, while the average diameter of rods in Z1, Z2, and Z3 nanostructures are in the range of 16–90 nm. SAED results indicate single crystalline nature of Z1 and Z2 and polycrystalline nature of Z3 nanostructures. DRS studies indicate that the band gap of Z1, Z2, and Z3 nanostructures is about 3.20–3.30 eV. After characterization, the antibacterial activity of ZnO nanostructures was evaluated against Escherichia coli and Staphylococcus aureus by zone of inhibition and sprinkle methods. The current study was undertaken to evaluate and compare antibacterial activity of ZnO nanostructures with different shapes synthesized using three different methods. In the zone of inhibition method, ZnO nanostructures exhibit better antibacterial activity against S. aureus than E. coli, while in the sprinkle method, Z2 and Z3 nanostructures exhibit complete antibacterial activity at 10 and 20 mg concentrations against S. aureus while only Z3 nanostructures exhibit complete antibacterial activity at 10, 20 and 30 mg concentrations against E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data presented in this study are available within the article.

References

  1. Y. Orooji, M. Faghih, A. Razmjou, J. Hou, P. Moazzam, N. Emami, M. Aghababaie, F. Nourisfa, V. Chen, W. Jin, Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon 111, 689–704 (2017)

    Google Scholar 

  2. Y. Orooji, A. Movahedi, Z. Liu, M. Asadnia, E. Ghasali, Y. Ganjkhanlou, A. Razmjou, H. Karimi-Maleh, N.T.H. Kiadeh, Luminescent film: Biofouling investigation of tetraphenylethylene blended polyethersulfone ultrafiltration membrane. Chemosphere 267, 128871–128884 (2021)

    ADS  Google Scholar 

  3. S. Arefi-Oskoui, A. Khataee, S.J. Behrouz, V. Vatanpour, S.H. Gharamaleki, Y. Orooji, M. Safarpour, Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep. Purif. Technol. 280, 119822–119834 (2022)

    Google Scholar 

  4. A. Senocak, V. Sanko, S.O. Tümay, Y. Orooji, E. Demirbas, Y. Yoon, A. Khataee, Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase. Food Chem. Toxicol. 164, 113016–113023 (2022)

    Google Scholar 

  5. M. Khalili, A. Razmjou, R. Shafiei, M.H. Shahavi, M.C. Li, Y. Orooji, High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO2 decorated nanocomposite films. Food Chem. Toxicol. 168, 113291–113299 (2022)

    Google Scholar 

  6. Z. Nezafat, M.M. Karimkhani, M. Nasrollahzadeh, S. Javanshir, A. Jamshidi, Y. Orooji, H.W. Jang, M. Shokouhimehr, Facile synthesis of Cu NPs@Fe3O4-lignosulfonate: Study of catalytic and antibacterial/antioxidant activities. Food Chem. Toxicol. 168, 113310–113321 (2022)

    Google Scholar 

  7. Y. Orooji, M. Ghanbari, O. Amiri, M. Salavati-Niasari, Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater. 389, 122079–122091 (2020)

    Google Scholar 

  8. T.S. Rad, Z. Ansarian, R.D.C. Soltani, A. Khataee, Y. Orooji, F. Vafaei, Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination. J. Hazard. Mater. 399, 123062–123077 (2020)

    Google Scholar 

  9. Y. Orooji, S. Mortazavi-Derazkola, S.M. Ghoreishi, M. Amiri, M. Salavati-Niasari, Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400, 123140–123149 (2020)

    Google Scholar 

  10. Y. Orooji, F. Liang, A. Razmjou, G. Liu, W. Jin, Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Sep. Purif. Technol. 205, 273–283 (2018)

    Google Scholar 

  11. Y. Orooji, F. Liang, A. Razmjou, S. Li, M.R. Mofid, Q. Liu, K. Guan, Z. Liu, W. Jin, Excellent biofouling alleviation of thermoexfoliated vermiculite blended poly(ether sulfone) ultrafiltration membrane. ACS Appl. Mater. Interfaces 9, 30024–30034 (2017)

    Google Scholar 

  12. Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran, A. Mokhtarzadeh, M. Mohaghegh, H. Karimi-Maleh, An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18–47 (2021)

    ADS  Google Scholar 

  13. K. Vijayalakshmi, D. Sivaraj, Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 5, 68461–68469 (2015)

    ADS  Google Scholar 

  14. Y.W. Baek, Y.J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total. Environ. 409, 1603–1608 (2011)

    ADS  Google Scholar 

  15. J.A. Flood-Garibay, M.A. Mendez-Rojas, Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids. Surf. A Physicochem. Eng. Asp. 615, 126236–126245 (2021)

    Google Scholar 

  16. S. Chaudhary, P. Sharma, D. Singh, A. Umar, R. Kumar, Chemical and pathogenic cleanup of wastewater using surface-functionalized CeO2 nanoparticles. ACS Sustain. Chem. Eng. 5, 6803–6816 (2017)

    Google Scholar 

  17. M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308–1316 (2008)

    ADS  Google Scholar 

  18. N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F.A. Alharthi, V. Mohana, Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities. Inorg. Chem. Commun. 127, 108507–108514 (2021)

    Google Scholar 

  19. L. Shkodenko, I. Kassirov, E. Koshel, Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8, 1545–1565 (2020)

    Google Scholar 

  20. C.I. Colino, J.M. Lanao, C. Gutierrez-Millan, Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater. Sci. Eng. C 121, 111843–111864 (2021)

    Google Scholar 

  21. K. Mondal, A. Sharma, Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 6, 83589–83612 (2016)

    ADS  Google Scholar 

  22. O. Akhavan, M. Choobtashani, E. Ghaderi, Protein degradation and RNA efflux of viruses photocatalyzed by Graphene-Tungsten oxide composite under visible light irradiation. J. Phys. Chem. C 116, 9653–9659 (2012)

    Google Scholar 

  23. K. Vijayalakshmi, D. Sivaraj, Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing. RSC Adv. 6, 9663–9671 (2016)

    ADS  Google Scholar 

  24. J. Jiang, G. Oberdorster, A. Elder, R. Gelein, P. Mercer, P. Biswas, Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2, 33–42 (2008)

    Google Scholar 

  25. M. Baek, M.K. Kim, H.J. Cho, J.A. Lee, J. Yu, H.E. Chung, S.J. Choi, Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge. J. Phys. Conf. Ser. 304, 012044–012050 (2011)

    Google Scholar 

  26. L. Xiong, Z.H. Tong, J.J. Chen, L.L. Li, H.Q. Yu, Morphology dependent antimicrobial activity of Cu/CuxO nanoparticles. Ecotoxicol. 24, 2067–2072 (2015)

    Google Scholar 

  27. H. Pang, F. Gao, Q. Lu, Morphology effect on antibacterial activity of cuprous oxide. Chem. Comm. 9, 1076–1078 (2009)

    Google Scholar 

  28. J. Nesic, S. Rtimi, D. Laub, G.M. Roglic, C. Pulgarin, J. Kiwi, New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues. Colloids. Surf. B 123, 593–599 (2014)

    Google Scholar 

  29. G.S. Theja, R.C. Lowrence, V. Ravi, S. Nagarajan, S.P. Anthony, Synthesis of Cu2O micro/nanocrystals with tunable morphologies using coordinating ligands as structure controlling agents and antimicrobial studies. CrystEngComm 16, 9866–9872 (2014)

    Google Scholar 

  30. C. Gunawan, W.Y. Teoh, C.P. Marquis, R. Amal, Cytotoxic origin of Copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5, 7214–7225 (2011)

    Google Scholar 

  31. N.H. Harun, R.B.S.M.N. Mydin, S. Sreekantan, K.A. Saharudin, N. Basiron, F. Radhi, A. Seeni, Shape-dependent antibacterial activity against Escherichia coli of zinc oxide nanoparticles. J. Biomed. Clin. Sci. 3, 35–38 (2018)

    Google Scholar 

  32. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomedicine 7, 6003–6009 (2012)

    Google Scholar 

  33. D.J. Sornalatha, S. Bhuvaneswari, S. Murugesan, P. Murugakoothan, Solochemical synthesis and characterization of ZnO nanostructures with different morphologies and their antibacterial activity. Optik 126, 63–67 (2015)

    ADS  Google Scholar 

  34. N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biol. 120, 66–73 (2013)

    Google Scholar 

  35. S.C.E. Gonzalez, E. Bolaina-Lorenzo, J.J. Perez-Trujillo, B.A. Puente-Urbina, O. Rodriguez-Fernandez, A. Fonseca-Garcia, R. Betancourt-Galindo, Antibacterial and anticancer activity of ZnO with different morphologies: a comparative study. 3 Biotech 11, 68–79 (2021)

    Google Scholar 

  36. A. Iglesias-Juez, F. Vines, O. Lamiel-Garcıa, M. Fernandez-Garcıa, F. Illas, Morphology effects in photoactive ZnO nanostructures: photooxidative activity of polar surfaces. J. Mater. Chem. A 3, 8782–8792 (2015)

    Google Scholar 

  37. A. Janotti, C.G.V.D. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)

    ADS  Google Scholar 

  38. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301–141103 (2005)

    ADS  Google Scholar 

  39. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Google Scholar 

  40. Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R Rep. 64, 33–71 (2009)

    Google Scholar 

  41. K. Bijanzad, A. Tadjarodi, O. Akhavan, Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II). Chinese J. Catal. 36, 742–749 (2015)

    Google Scholar 

  42. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)

    Google Scholar 

  43. M. Ebadi, M.R. Zolfaghari, S.S. Aghaei, M. Zargar, M. Shafiei, H.S. Zahiri, K.A. Noghabi, A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of Cyanobacterium Nostoc sp. EA03: from biological function to toxicity evaluation. RSC Adv. 9, 23508–23525 (2019)

    ADS  Google Scholar 

  44. N. Rabiee, O. Akhavan, Y. Fatahi, A.M. Ghadiri, M. Kiani, P. Makvandi, M. Rabiee, M.H. Nicknam, M.R. Saeb, R.S. Varma, M. Ashrafizadeh, E.N. Zare, E. Sharifi, E.C. Lima, CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere 306, 135578–135588 (2022)

    ADS  Google Scholar 

  45. H. Bai, Z. Liu, D.D. Sun, Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys. Chem. Chem. Phys. 13, 6205–6210 (2011)

    Google Scholar 

  46. M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J. Alloys Compd. 590, 507–513 (2014)

    Google Scholar 

  47. O. Akhavana, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys. 130, 598–602 (2011)

    Google Scholar 

  48. A. Nourmohammadi, R. Rahighi, O. Akhavan, A. Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloys Compd. 612, 380–385 (2014)

    Google Scholar 

  49. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J. Phys. D: Appl. Phys. 42, 225305–225314 (2009)

    ADS  Google Scholar 

  50. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C 117, 5558–5567 (2013)

    Google Scholar 

  51. M. Bitenc, Z.C. Orel, Synthesis and characterization of crystalline hexagonal bipods of zinc oxide. Mater. Res. Bull. 44, 381–387 (2009)

    Google Scholar 

  52. C. Wu, X. Qiao, J. Chen, H. Wang, Controllable ZnO morphology via simple template-free solution route. Mater. Chem. Phys. 102, 7–12 (2007)

    Google Scholar 

  53. R. Chakraborty, R.K. Sarkar, A.K. Chatterjee, U. Manju, A.P. Chattopadhyay, T. Basu, A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action. Biochim. Biophys. Acta 1850, 845–856 (2015)

    Google Scholar 

  54. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    ADS  Google Scholar 

  55. L. Liu, J. Yang, J. Xie, Z. Luo, J. Jiang, Y.Y. Yang, S. Liu, The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale 5, 3834–3840 (2013)

    ADS  Google Scholar 

  56. G. Chen, J. Lu, C. Lam, Y. Yu, A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 139, 5793–5799 (2014)

    ADS  Google Scholar 

  57. R. Wahab, A. Mishra, S.I. Yun, Y.S. Kim, H.S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl. Microbiol. Biotechnol. 87, 1917–1925 (2010)

    Google Scholar 

  58. J. Tukey, Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949)

    MathSciNet  Google Scholar 

  59. F. Bigdeli, A. Morsali, P. Retalleau, Synthesis and characterization of different zinc (II) oxide nano-structures from direct thermal decomposition of ID coordination polymers. Polyhedron 29, 801–806 (2010)

    Google Scholar 

  60. R. Wahab, Y.S. Kim, K. Lee, H.S. Shin, Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J. Mater. Sci. 45, 2967–2973 (2010)

    ADS  Google Scholar 

  61. Y. Wang, X. Sun, H. Li, Synthesis, characterization and room temperature photoluminescence properties of briers-like ZnO nanoarchitectures. Mater. Sci. Eng. B 167, 177–181 (2010)

    Google Scholar 

  62. R. Dobrucka, J. Dugaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23, 517–523 (2016)

    Google Scholar 

  63. A. Anzlovar, Z.C. Orel, K. Kogej, M. Zigon, Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate). J. Nanomater. 2012, 1–9 (2012)

    Google Scholar 

  64. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 015008–015015 (2018)

    ADS  Google Scholar 

  65. X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, F. Xu, Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans. 41, 2804–2811 (2012)

    Google Scholar 

  66. G.X. Tong, F.F. Du, Y. Liang, Q. Hu, R.N. Wu, J.G. Guan, X. Hu, Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B 1, 454–463 (2013)

    Google Scholar 

  67. A.M. Dıez-Pascual, C. Xu, R. Luque, Development and characterization of novel poly(ether ether ketone)/ZnO bionanocomposites. J. Mater. Chem. B 2, 3065–3078 (2014)

    Google Scholar 

  68. T. Mahardika, N.A. Putri, A.E. Putri, V. Fauzia, L. Roza, I. Sugihartono, Y. Herbani, Rapid and low temperature synthesis of Ag nanoparticles on the ZnO nanorods for photocatalytic activity improvement. Results Phys. 13, 102209–102217 (2019)

    Google Scholar 

  69. G. Hua, L. Sun, Y. Tian, X. Chen, L. Zhang, J. Dai, L. Hu, S.A. Dai, Facile chemical route to synthesize ZnO nanoarrays: one-dimensional nanowire arrays and two-dimensional porous nanosheet arrays. J. Nanosci. Nanotechnol. 11, 3488–3492 (2011)

    Google Scholar 

  70. M. Misra, P. Kapur, C. Ghanshyam, M.L. Singla, ZnO@CdS core-shell thin film: fabrication and enhancement of exciton life time by CdS nanoparticle. J. Mater. Sci 24, 3800–3804 (2013)

    Google Scholar 

  71. H. Li, C. Yao, L. Meng, H. Sun, J. Huang, Q. Gong, Photoelectrochemical performance of hydrogenated ZnO/CdS core-shell nanorod arrays. Electrochim. Acta 108, 45–50 (2013)

    ADS  Google Scholar 

  72. G. Guerguerian, F. Elhordoy, C.J. Pereyra, R.E. Marotti, F. Martin, D. Leinen, B. Ramos, R. Jose, E.A. Dalchiele, ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications. Nanotechnology 22, 505401–505409 (2011)

    Google Scholar 

  73. L. Li, X. Liu, Y. Zhnag, P.A. Salvador, G.S. Rohrer, Heterostructured (Ba, Sr) TiO3/TiO2 core/shell photocatalysts: influence of processing and structure on hydrogen production. Int. J. Hydrog. Energy 38, 6948–6959 (2013)

    Google Scholar 

  74. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    ADS  Google Scholar 

  75. S. Baskoutas, G. Bester, Conventional optics from unconventional electronics in ZnO quantum dots. J. Phys. Chem. C 114, 9301–9307 (2010)

    Google Scholar 

  76. S. Baskoutas, G. Bester, Transition in the optical emission polarization of ZnO nanorods. J. Phys. Chem. C 115, 15862–15867 (2011)

    Google Scholar 

  77. X. Fuku, A. Diallo, M. Maaza, Nanoscaled electrocatalytic optically modulated ZnO nanoparticles through green process of Punica granatum L. and their antibacterial activities. Int. J. Electrochem. 2016, 1–10 (2016)

    Google Scholar 

  78. P. Krishnamurthi, Y. Raju, Y. Khambhaty, P.T. Manoharan, Zinc Oxide-supported copper clusters with high biocidal efficacy for Escherichia coli and Bacillus cereus. ACS Omega 2, 2524–2535 (2017)

    Google Scholar 

  79. S.W. Zhao, M. Zheng, X.H. Zou, Y. Guo, Q.J. Pan, Self-assembly of hierarchically structured cellulose @ ZnO composite in solid-liquid homogeneous phase: synthesis, DFT calculations, and enhanced antibacterial activities. ACS Sustain. Chem. Eng. 5, 6585–6596 (2017)

    Google Scholar 

  80. R.K. Dutta, P.K. Sharma, R. Bhargava, N. Kumar, A.C. Pandey, Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles. J. Phys. Chem. B 114, 5594–5599 (2010)

    Google Scholar 

  81. G. Kasi, J. Seo, Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C 98, 717–725 (2019)

    Google Scholar 

  82. A. Kumar, A.K. Pandey, S.S. Singh, R. Shanker, A. Dhawan, Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 51, 1872–1881 (2011)

    Google Scholar 

  83. V.L. Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015)

    Google Scholar 

  84. Y.W. Wang, A. Cao, Y. Jiang, X. Zhang, J.H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 6, 2791–2798 (2014)

    Google Scholar 

  85. O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50, 1853–1860 (2012)

    Google Scholar 

  86. M. Jannesari, O. Akhavan, H.R.M. Hosseini, B. Bakhshi, Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl. Mater. Interfaces 12, 35813–35825 (2020)

    Google Scholar 

  87. T. Dutta, R. Sarkar, B. Pakhira, S. Ghosh, R. Sarkar, A. Barui, S. Sarkar, ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). RSC Adv. 5, 80192–80195 (2015)

    ADS  Google Scholar 

  88. O. Akhavan, E. Ghaderi, A. Esfandiar, Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B 115, 6279–6288 (2011)

    Google Scholar 

  89. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010)

    Google Scholar 

  90. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011)

    Google Scholar 

  91. E.D. Lucas-Gil, P. Leret, M. Monte-Serrano, J.J. Reinosa, E. Enrıquez, A.D. Campo, M. Canete, J. Menendez, J.F. Fernandez, F. Rubio-Marcos, ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physicochemical interactions. ACS Appl. Nano Mater. 1, 3214–3225 (2018)

    Google Scholar 

  92. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011)

    ADS  Google Scholar 

  93. A.R. Chowdhuri, S. Tripathy, S. Chandra, S. Roy, S.K. Sahu, A ZnO decorated chitosan-graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv. 5, 49420–49428 (2015)

    ADS  Google Scholar 

  94. X. Cai, Y. Luo, W. Zhang, D. Du, Y. Lin, pH-Sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces 8, 22442–22450 (2016)

    Google Scholar 

  95. S. Thakur, S. Neogi, A.K. Ray, Morphology-controlled synthesis of ZnO nanostructures for caffeine degradation and Escherichia coli inactivation in water. Catalysts 11, 63–80 (2021)

    Google Scholar 

  96. P.P. Mahamuni-Badiger, P.M. Patil, M.V. Badiger, P.R. Patel, B.S. Thorat-Gadgil, A. Pandit, R.A. Bohara, Biofilm formation to inhibition: role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C 108, 110319–110338 (2020)

    Google Scholar 

  97. P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande, R.A. Bohara, Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 17, 71–80 (2019)

    Google Scholar 

  98. C.H. Li, C.C. Shen, Y.W. Cheng, S.H. Huang, C.C. Wu, C.C. Kao, J.W. Liao, J.J. Kang, Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6, 746–756 (2012)

    Google Scholar 

  99. M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater. Sci. Eng. C 32, 2381–2389 (2012)

    Google Scholar 

  100. N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004–0350010 (2008)

    Google Scholar 

  101. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, A.M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano. Lett. 6, 866–870 (2006)

    ADS  Google Scholar 

  102. A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 249, 37–52 (2017)

    Google Scholar 

  103. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    ADS  Google Scholar 

  104. L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007)

    ADS  Google Scholar 

  105. Q.A. Naqvi, A. Kanwal, S. Qaseem, M. Naeem, S.R. Ali, M. Shaffique, M. Maqbool, Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J. Biol. Phys. 45, 147–159 (2019)

    Google Scholar 

  106. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015)

    Google Scholar 

  107. L.S.R. Yadav, B. Archana, K. Lingaraju, C. Kavitha, D. Suresh, H. Nagabhushana, G. Nagaraju, Electrochemical sensing, photocatalytic and biological activities of ZnO nanoparticles: synthesis via green chemistry route. Int. J. Nanosci. 15, 1650013 (2016)

    Google Scholar 

  108. W. Jiang, H. Mashayekhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157, 1619–1625 (2009)

    Google Scholar 

  109. O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001)

    Google Scholar 

  110. W.K. Tolossa, P.T. Shibeshi, Structural, optical and enhanced antibacterial activities of ZnO and (Co, Fe) co-doped ZnO nanoparticles by sol-gel combustion method. Chem. Phys. Lett. 795, 139519–139525 (2022)

    Google Scholar 

  111. N. Pauzi, N.M. Zain, R.V. Kutty, H. Ramli, Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent. Mater. Today Proc. 41, 1–8 (2021)

  112. X. Zhang, H. Shi, E. Liu, X. Hu, K. Zhang, J. Fan, Preparation of polycrystalline ZnO nanoparticles loaded onto graphene oxide and their antibacterial properties. Mater. Today Commun. 28, 102531–102539 (2021)

Download references

Acknowledgements

Rahul thanks the Department of Science and Technology (DST), Government of India, for the award of INSPIRE Fellowship (JRF and SRF). The authors are thankful to Institute Instrumentation Centre (IIC), IIT Roorkee, for providing various instrumental facilities. Thanks are due to Centre for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, IIT Roorkee, for providing various laboratory facilities and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1983 KB)

Supplementary file2 (DOCX 4270 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, R., Roy, P. & Jeevanandam, P. Antibacterial activity studies of ZnO nanostructures with different morphologies against E. coli and S. aureus. Appl. Phys. A 129, 244 (2023). https://doi.org/10.1007/s00339-023-06530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06530-3

Keywords

Navigation