Skip to main content
Log in

Tunable hydrogen evolution activity of black antimony–phosphorus monolayers via strain engineering: a first-principles calculation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The HER activity and related electronic properties of monolayer binary V–V compound SbP under the biaxial strains are discussed by employing the first-principles calculations based on DFT. It is found that different compressive and tensile strains would modulate the ΔGH*, εLUS partial charge density affecting the HER activity, and band structures of phosphorene for electrocatalysis. Particularly, as the ΔGH* decreases, the HER activity of strained SbP is improved under the compressive strains. Importantly, in the condition of applying − 6% strain, the value of ΔGH* reduced to 0.27 eV and transfers to metallic feature. In the other conditions, the bandgaps of systems under strains are indirect semiconductors. Comparing with strained-free case, the larger partial charge density of εLUS on the surface of SbP illustrates the more H adsorption sites for electrocatalysis. Moreover, the HER activity is related to the partial charge density of εLUS rather than the εLUS site. The presentation reveals that strain would effectively modulate the HER performances for electrocatalysis. It is expected to provide further understanding in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Li, Y. Yu, G.J. Ye et al., Nat. Nanotechnol. 9, 372 (2014). https://doi.org/10.1038/nnano.2014.35

    Article  ADS  Google Scholar 

  2. Y. Xu, J. Yuan, K. Zhang et al., Adv. Funct. Mater. 27, 1702211 (2017). https://doi.org/10.1002/adfm.201702211

    Article  Google Scholar 

  3. M. Hu, Z. Yang, W. Zhou et al., Physica E: Low-dimension. Syst. Nanostruct. 98, 60 (2018). https://doi.org/10.1016/j.physe.2017.12.027

    Article  ADS  Google Scholar 

  4. M. Yarmohammadi, M. Mortezaei, K. Mirabbaszadeh, Physica E: Low-dimension. Syst. Nanostruct. 124, 114323 (2020). https://doi.org/10.1016/j.physe.2020.114323

    Article  Google Scholar 

  5. H.U. Lee, S.C. Lee, J. Won et al., Sci. Report. 5, 1 (2015). https://doi.org/10.1038/srep08691

    Article  Google Scholar 

  6. Q. Wei, X. Peng, Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.3382344

    Article  ADS  Google Scholar 

  7. H. Qiao, H. Liu, Z. Huang et al., Adv. Energy Mater. 10, 2002424 (2020). https://doi.org/10.1002/aenm.202002424

    Article  Google Scholar 

  8. Z. Shi, X. Ren, H. Qiao et al., J. Photochem. Photobiol. C: Photochem. Rev. 43, 100354 (2020). https://doi.org/10.1016/j.jphotochemrev.2020.100354

    Article  Google Scholar 

  9. Z. Guo, H. Zhang, S. Lu et al., Adv. Funct. Mater. 25, 6996 (2015). https://doi.org/10.1002/adfm.201502902

    Article  Google Scholar 

  10. S.C. Dhanabalan, J.S. Ponraj, Z. Guo et al., Adv. Sci. 4, 1600305 (2017). https://doi.org/10.1002/advs.201600305

    Article  Google Scholar 

  11. J. Gong, L. Li, X. Zhou et al., Physica E: Low-dimension. Syst. Nanostruct. 126, 114495 (2021). https://doi.org/10.1016/j.physe.2020.114495

    Article  Google Scholar 

  12. O. Boutahir, S. Lakhlifi, S.A.A. Abdelkader et al., Physica E: Low-dimension. Syst. Nanostruct. 132, 114757 (2021). https://doi.org/10.1016/j.physe.2021.114757

    Article  Google Scholar 

  13. G. Liao, H. Qiao, Z. Huang et al., Opt. Mater. 114, 110934 (2021). https://doi.org/10.1016/j.optmat.2021.110934

    Article  Google Scholar 

  14. J. Han, J. Xie, Z. Zhang et al., Appl. Phys. Express. 8, 041801 (2015). https://doi.org/10.7567/apex.8.041801

    Article  ADS  Google Scholar 

  15. C. Wang, Q. Xia, Y. Nie et al., AIP Adv. 6, 035204 (2016). https://doi.org/10.1063/1.4943548

    Article  ADS  Google Scholar 

  16. S. Zhang, M. Xie, F. Li et al., Angew. Chem. 128, 1698 (2016). https://doi.org/10.1002/anie.201507568

    Article  ADS  Google Scholar 

  17. D. Kecik, E. Durgun, S. Ciraci, Phys. Rev. B. 94, 205409 (2016). https://doi.org/10.1103/PhysRevB.94.205409

    Article  ADS  Google Scholar 

  18. S. Zhang, Z. Yan, Y. Li et al., Angew. Chem. 127, 3155 (2015). https://doi.org/10.1002/anie.201411246

    Article  ADS  Google Scholar 

  19. M. Zhao, X. Zhang, L. Li, Sci. Report. 5, 1 (2015). https://doi.org/10.1038/srep16108

    Article  Google Scholar 

  20. S. Zhang, M. Xie, B. Cai et al., Phys. Rev. B. 93, 245303 (2016). https://doi.org/10.1103/PhysRevB.93.245303

    Article  ADS  Google Scholar 

  21. W. Yu, C.-Y. Niu, Z. Zhu et al., J. Mater. Chem. C. 4, 6581 (2016). https://doi.org/10.1039/C6TC01505K

    Article  Google Scholar 

  22. Y. Nie, M. Rahman, P. Liu et al., Phys. Rev. B. 96, 075401 (2017). https://doi.org/10.1103/PhysRevB.96.075401

    Article  ADS  Google Scholar 

  23. T. Kocabaş, D. Çakır, O. Gülseren et al., Nanoscale 10, 7803 (2018). https://doi.org/10.1039/c7nr09349g

    Article  Google Scholar 

  24. S. Guo, Y. Zhang, Y. Ge et al., Adv. Mater. 31, 1902352 (2019). https://doi.org/10.1002/adma.201902352

    Article  Google Scholar 

  25. F. Chen, H. Xu, J. Wang et al., J. Appl. Phys. 125, 214303 (2019). https://doi.org/10.1063/1.5081489

    Article  ADS  Google Scholar 

  26. Z. Zhen, J. Guan, D. Tomanek, Nano Lett. 15, 6042 (2015). https://doi.org/10.1021/acs.nanolett.5b02227

    Article  ADS  Google Scholar 

  27. L. Kou, Y. Ma, X. Tan et al., J. Phys. Chem. C. 119, 6918 (2015). https://doi.org/10.1021/acs.jpcc.5b02096

    Article  Google Scholar 

  28. P. Liu, Y. Nie, Q. Xia et al., Phys. Lett. A. 381, 1102 (2017). https://doi.org/10.1016/j.physleta.2017.01.026

    Article  ADS  Google Scholar 

  29. S. Li, W. Ji, P. Li et al., Sci. Reports. 7, 1 (2017). https://doi.org/10.1038/s41598-017-05420-y

    Article  ADS  Google Scholar 

  30. X. Ren, J. Zhou, X. Qi et al., Adv. Energy Mater. 7, 1700396 (2017). https://doi.org/10.1002/aenm.201700396

    Article  Google Scholar 

  31. Q. Ma, H. Qia, Z. Huang et al., Appl. Surf. Sci. 562, 150213 (2021). https://doi.org/10.1016/j.apsusc.2021.150213

    Article  Google Scholar 

  32. M. Jia, S. Hong, T.-S. Wu et al., Chem. Commun. 55, 12024 (2019). https://doi.org/10.1039/c9cc06178a

    Article  Google Scholar 

  33. R. Gusmão, Z. Sofer, D. Bouša et al., Angew. Chem. 129, 14609 (2017). https://doi.org/10.1002/anie.201706389

    Article  ADS  Google Scholar 

  34. T. Bo, Y. Liu, J. Yuan et al., Appl. Surf. Sci. 507, 145194 (2020). https://doi.org/10.1016/j.apsusc.2019.145194

    Article  Google Scholar 

  35. D. Liu, J. Wang, J. Lu et al., Small Methods. 3, 1900083 (2019). https://doi.org/10.1002/smtd.201900083

    Article  Google Scholar 

  36. X. Mao, Z. Qin, S. Ge et al., Mater. Horiz. 10, 340 (2023). https://doi.org/10.1039/d2mh01171a

    Article  Google Scholar 

  37. J. Lu, X. Zhang, D. Liu et al., ACS Appl. Mater. Interfac. 11, 37787 (2019). https://doi.org/10.1021/acsami.9b13666

    Article  Google Scholar 

  38. X. Xu, T. Liang, D. Kong et al., Mater. Today Nano. 14, 100111 (2021). https://doi.org/10.1016/j.mtnano.2021.100111

    Article  Google Scholar 

  39. G. Kresse, J. Hafner, J. Non-Crystall. Solids. 156, 956 (1993). https://doi.org/10.1016/0022-3093(93)90104-6

    Article  ADS  Google Scholar 

  40. P.E. Blochl, Phys Rev B Condens Matter. 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953

    Article  ADS  Google Scholar 

  41. G. Kresse, D. Joubert, Phys. Rev. B. 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  42. J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Phys. Rev. B. 48, 4978 (1993). https://doi.org/10.1103/physrevb.48.4978.2

    Article  ADS  Google Scholar 

  43. B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B. 59, 7413 (1999). https://doi.org/10.1103/PhysRevB.59.7413

    Article  ADS  Google Scholar 

  44. Y. Liu, J. Wu, K.P. Hackenberg et al., Nat. Energy (2017). https://doi.org/10.1038/nenergy.2017.127

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Provincial Natural Science Foundation of Hunan (No. 2022JJ30553), Scientific Research Fund of Hunan Provincial Education Department (No. 21A0080), Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010), as well as the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyu Huang or Huating Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, F., Shu, Y. et al. Tunable hydrogen evolution activity of black antimony–phosphorus monolayers via strain engineering: a first-principles calculation. Appl. Phys. A 129, 340 (2023). https://doi.org/10.1007/s00339-023-06566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06566-5

Keywords

Navigation