Skip to main content
Log in

Temperature-dependent resistive switching behavior of a hybrid semiconductor-oxide planar system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have reported the temperature-dependent resistive switching (RS) behavior observed in (1-x)CuI.(x)La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_{3}\) nanocomposites with 0.001 < x < 0.05 within the temperature range of 150 K to 300 K. Here, we observed bipolar and interface-type RS behavior, where the resistance can be altered to its previous state by the application of an opposite bias voltage. The extensive analysis of the current versus voltage data for different compositions at room temperature revealed that the dominating transport mechanisms in the low and high bias regions, respectively, were Schottky emission and Poole–Frenkel effect. The enhanced switching response of the RS medium after the addition of La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_{3}\) can be attributed to the oxygen vacancy-induced conduction which was confirmed by X Ray Photoelectron Spectroscopy (XPS) measurements. In the endurance test, the highest ON/OFF ratio averaged over 100 cycles was observed to be 4.2 ± 1.1 and 3.8 ± 0.3 for x = 0.001 and 0.02 respectively at T = 300K. At T = 250 K, we obtained the optimal ON/OFF ratio of 19.8 \(\pm\) 1.8 for x = 0.001 and 22.7 \(\pm\) 4.1 for x = 0.02. The investigation  of current versus voltage graphs for T = 250 K, 200 K, and 150 K further confirmed Schottky emission and the Poole–Frenkel effect as the dominating transport mechanisms at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Waser, R. Dittmann, S. Menzel, T. Noll, Introduction to new memory paradigms: memristive phenomena and neuromorphic applications. Faraday Discuss. 213, 11 (2019). https://doi.org/10.1039/c8fd90058b

    Article  ADS  Google Scholar 

  2. D.S. Jeong, C.S. Hwang, Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 30, 1704729 (2018). https://doi.org/10.1002/adma.201704729

    Article  Google Scholar 

  3. R. Bez, A. Pirovano, Overview of non-volatile memory technology: markets, technologies and trends, in booktitle Advances in Non-volatile Memory and Storage Technology ( publisher Elsevier, 2014) pp. 1–24 https://doi.org/10.1533/9780857098092.1

  4. G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M.L. Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89 (2016). https://doi.org/10.1080/23746149.2016.1259585

    Article  Google Scholar 

  5. L. Peng, Z. Li, G. Wang, J. Zhou, R. Mazzarello, Z. Sun, Reduction in thermal conductivity of sb2te phase-change material by scandium/yttrium doping. J. Alloy. Compd. 821, 153499 (2020). https://doi.org/10.1016/j.jallcom.2019.153499

    Article  Google Scholar 

  6. Q. Wang, G. Niu, R. Wang, R. Luo, Z.-G. Ye, J. Bi, X. Li, Z. Song, W. Ren, S. Song, Reliable ge2sb2te5 based phase-change electronic synapses using carbon doping and programmed pulses. J. Materiomics (2021). https://doi.org/10.1016/j.jmat.2021.08.004

    Article  Google Scholar 

  7. A.D. Kent, D.C. Worledge, A new spin on magnetic memories. Nat. Nanotechnol. 10, 187 (2015). https://doi.org/10.1038/nnano.2015.24

    Article  ADS  Google Scholar 

  8. T. Kawahara, K. Ito, R. Takemura, H. Ohno, Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613 (2012). https://doi.org/10.1016/j.microrel.2011.09.028

    Article  Google Scholar 

  9. H. Shen, J. Liu, K. Chang, L. Fu, In-plane ferroelectric tunnel junction. Phys. Rev. Appl. 11, 024048 (2019). https://doi.org/10.1103/physrevapplied.11.024048

    Article  ADS  Google Scholar 

  10. K. Kumari, A. Kumar, A.D. Thakur, S. Ray, Charge transport and resistive switching in a 2d hybrid interface. Mater. Res. Bull. 139, 111195 (2021). https://doi.org/10.1016/j.materresbull.2020.111195

    Article  Google Scholar 

  11. P.M. Chowdhury, A. Raychaudhuri, Electromigration of oxygen and resistive state transitions in sub-micron width long strip of la0.85sr0.15mno3 connected to an engineered oxygen source. Mater. Res. Bull. 137, 111160 (2021). https://doi.org/10.1016/j.materresbull.2020.111160

    Article  Google Scholar 

  12. J. Jia, J. Gao, Y. He, G. Zhao, Y. Ren, Resistive switching effect of YBa2cu3o7–x/nb:SrTiO3 heterostructure. Mater. Res. Bull. 107, 328 (2018). https://doi.org/10.1016/j.materresbull.2018.08.005

    Article  Google Scholar 

  13. C.-A. Lin, C.-J. Huang, T.-Y. Tseng, Impact of barrier layer on HfO2-based conductive bridge random access memory. Appl. Phys. Lett. 114, 093105 (2019). https://doi.org/10.1063/1.5087421

    Article  ADS  Google Scholar 

  14. K. Hong, K.K. Min, M.-H. Kim, S. Bang, T.-H. Kim, D.K. Lee, Y.J. Choi, C.S. Kim, J.Y. Lee, S. Kim, S. Cho, B.-G. Park, Investigation of the thermal recovery from reset breakdown of a SiN x -based RRAM. IEEE Trans. Electron Devices 67, 1600 (2020). https://doi.org/10.1109/ted.2020.2976106

    Article  ADS  Google Scholar 

  15. K.-M. Persson, M.S. Ram, O.-P. Kilpi, M. Borg, L.-E. Wernersson, Cross-point arrays with low-power ITO-HfO 2 resistive memory cells integrated on vertical III–v nanowires. Adv. Electron. Mater. 6, 2000154 (2020). https://doi.org/10.1002/aelm.202000154

    Article  Google Scholar 

  16. B. Sánta, D. Molnár, P. Haiber, A. Gubicza, E. Szilágyi, Z. Zolnai, A. Halbritter, M. Csontos, Nanosecond resistive switching in ag/AgI/PtIr nanojunctions. Beilstein J. Nanotechnol. 11, 92 (2020). https://doi.org/10.3762/bjnano.11.9

    Article  Google Scholar 

  17. G. Zisis, C.Y.J. Ying, P. Ganguly, C.L. Sones, E. Soergel, R.W. Eason, S. Mailis, Enhanced electro-optic response in domain-engineered LiNbO3 channel waveguides. Appl. Phys. Lett. 109, 021101 (2016). https://doi.org/10.1063/1.4958685

    Article  ADS  Google Scholar 

  18. X. Ding, Y. Feng, P. Huang, L. Liu, J. Kang, Low-power resistive switching characteristic in HfO2/TiOx bi-layer resistive random-access memory. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-2956-4

    Article  Google Scholar 

  19. D.-H. Kwon, S. Lee, C.S. Kang, Y.S. Choi, S.J. Kang, H.L. Cho, W. Sohn, J. Jo, S.-Y. Lee, K.H. Oh, T.W. Noh, R.A.D. Souza, M. Martin, M. Kim, Unraveling the origin and mechanism of nanofilament formation in polycrystalline SrTiO 3 resistive switching memories. Adv. Mater. 31, 1901322 (2019). https://doi.org/10.1002/adma.201901322

    Article  Google Scholar 

  20. Y.B. Lin, Z.B. Yan, X.B. Lu, Z.X. Lu, M. Zeng, Y. Chen, X.S. Gao, J.G. Wan, J.Y. Dai, J.-M. Liu, Temperature-dependent and polarization-tuned resistive switching in au/BiFeO3/SrRuO3 junctions. Appl. Phys. Lett. 104, 143503 (2014). https://doi.org/10.1063/1.4870813

    Article  ADS  Google Scholar 

  21. C. Mahata, C. Lee, Y. An, M.-H. Kim, S. Bang, C.S. Kim, J.-H. Ryu, S. Kim, H. Kim, B.-G. Park, Resistive switching and synaptic behaviors of an HfO2/al2o3 stack on ITO for neuromorphic systems. J. Alloy. Compd. 826, 154434 (2020). https://doi.org/10.1016/j.jallcom.2020.154434

    Article  Google Scholar 

  22. H. Zhang, S. Yoo, S. Menzel, C. Funck, F. Cüppers, D.J. Wouters, C.S. Hwang, R. Waser, S. Hoffmann-Eifert, Understanding the coexistence of two bipolar resistive switching modes with opposite polarity in pt/TiO2/ti/pt nanosized ReRAM devices. ACS Appl. Mater. Interfaces 10, 29766 (2018). https://doi.org/10.1021/acsami.8b09068

    Article  Google Scholar 

  23. N. Raeis-Hosseini, J.-S. Lee, Resistive switching memory using biomaterials. J. Electroceramics 39, 223 (2017). https://doi.org/10.1007/s10832-017-0104-z

    Article  Google Scholar 

  24. S. Gao, X. Yi, J. Shang, G. Liu, R.-W. Li, Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 48, 1531 (2019). https://doi.org/10.1039/c8cs00614h

    Article  Google Scholar 

  25. A. Noohul, S. Majumder, S. Jyoti Ray, A wide bandgap semiconducting magnesium hydrogel: moisture harvest, iodine sequestration, and resistive switching. Langmuir 38(34), 10601–10610 (2022)

    Article  Google Scholar 

  26. D. Chaudhary, S. Munjal, N. Khare, V.D. Vankar, Bipolar resistive switching and nonvolatile memory effect in poly (3-hexylthiophene) -carbon nanotube composite films. Carbon 130, 553 (2018). https://doi.org/10.1016/j.carbon.2018.01.058

    Article  Google Scholar 

  27. S. Majumder, K. Kumari, S.J. Ray, Pulsed voltage induced resistive switching behavior of copper iodide and la0.7sr0.3mno3 nanocomposites. Mater. Lett. 302, 130339 (2021). https://doi.org/10.1016/j.matlet.2021.130339

    Article  Google Scholar 

  28. E. Ercan, J.-Y. Chen, P.-C. Tsai, J.-Y. Lam, S.C.-W. Huang, C.-C. Chueh, W.-C. Chen, A redox-based resistive switching memory device consisting of organic-inorganic hybrid perovskite/polymer composite thin film. Adv. Electron. Mater. 3, 1700344 (2017). https://doi.org/10.1002/aelm.201700344

    Article  Google Scholar 

  29. K. Karuna, S.J. Ray, A.D. Thakur, Resistive switching phenomena: a probe for the tracing of secondary phase in manganite. Appl. Phys. A 128(5), 1–11 (2022)

    Article  Google Scholar 

  30. K. Karuna, A.D. Thakur, S.J. Ray, Structural, resistive switching and charge transport behaviour of (1-x) La 0.7 Sr 0.3 MnO 3.(x) ZnO composite system. Appl. Phys. A 128(11), 992 (2022)

    Article  ADS  Google Scholar 

  31. K. Karuna, A.D. Thakur, S.J. Ray, The effect of graphene and reduced graphene oxide on the resistive switching behavior of La0. 7Ba0. 3MnO3. Mater. Today Commun. 26, 102040 (2021)

    Article  Google Scholar 

  32. K. Karuna, S. Kar, A.D. Thakur, S.J. Ray, Role of an oxide interface in a resistive switch. Curr. Appl. Phys. 35, 16–23 (2022)

    Article  ADS  Google Scholar 

  33. K. Karuna, S. Majumder, A.D. Thakur, S.J. Ray, Temperature-dependent resistive switching behaviour of an oxide memristor. Mater. Lett. 303, 130451 (2021)

    Article  Google Scholar 

  34. K. Ashutosh, K. Kumari, S.J. Ray, A.D. Thakur, Graphene mediated resistive switching and thermoelectric behavior in lanthanum cobaltate. J. Appl. Phys. 127(23), 235103 (2020)

    Article  ADS  Google Scholar 

  35. V.K. Perla, S.K. Ghosh, K. Mallick, Light induced transformation of resistive switching polarity in sb2s3 based organic-inorganic hybrid devices. J. Mater. Chem. C (2021). https://doi.org/10.1039/d1tc01121a

    Article  Google Scholar 

  36. W. Yu, F. Chen, Y. Wang, L. Zhao, Rapid evaluation of oxygen vacancies-enhanced photogeneration of the superoxide radical in nano-TiO\(_{2}\) suspensions. RSC Adv. 10, 29082 (2020). https://doi.org/10.1039/d0ra06299e

    Article  ADS  Google Scholar 

  37. D. Chen, Y. Wang, Z. Lin, J. Huang, X. Chen, D. Pan, F. Huang, Growth strategy and physical properties of the high mobility p-type CuI crystal. Crystal Growth Design 10, 2057 (2010). https://doi.org/10.1021/cg100270d

    Article  Google Scholar 

  38. J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Investigation of oxygen vacancies in ce coupled TiO\(_{2}\) nanocomposites by Raman and PL spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015015 (2017). https://doi.org/10.1088/2043-6254/aa5984

    Article  ADS  Google Scholar 

  39. S. Choudhary, M. Soni, S.K. Sharma, Low voltage controlled switching of MoStextsubscript2 -GO resistive layers based ReRAM for non-volatile memory applications. Semicond. Sci. Technol. 34, 085009 (2019). https://doi.org/10.1088/1361-6641/ab2c09

    Article  ADS  Google Scholar 

  40. G. Khurana, P. Misra, N. Kumar, R.S. Katiyar, Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods. J. Phys. Chem. C 118, 21357 (2014). https://doi.org/10.1021/jp506856f

    Article  Google Scholar 

  41. L. Cao, O. Petracic, P. Zakalek, A. Weber, U. Rücker, J. Schubert, A. Koutsioubas, S. Mattauch, T. Brückel, Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial la0.7 sr0.3 MnO3-\(\delta\) thin films. Adv. Mater. 31, 1806183 (2018). https://doi.org/10.1002/adma.201806183

    Article  Google Scholar 

  42. L. Yao, S. Inkinen, S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in la2/3sr1/3mno3. Nat. Commun. (2017). https://doi.org/10.1038/ncomms14544

    Article  Google Scholar 

  43. P. Sirimanne, M. Rusop, T. Shirata, T. Soga, T. Jimbo, Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique. Chem. Phys. Lett. 366, 485 (2002). https://doi.org/10.1016/s0009-2614(02)01590-7

    Article  ADS  Google Scholar 

  44. N.P. Klochko, K.S. Klepikova, V.R. Kopach, D.O. Zhadan, V.V. Starikov, D.S. Sofronov, I.V. Khrypunova, S.I. Petrushenko, S.V. Dukarov, V.M. Lyubov, M.V. Kirichenko, S.P. Bigas, A.L. Khrypunova, Solution-produced copper iodide thin films for photosensor and for vertical thermoelectric nanogenerator, which uses a spontaneous temperature gradient. J. Mater. Sci.: Mater. Electron. 30, 17514 (2019). https://doi.org/10.1007/s10854-019-02103-4

    Article  Google Scholar 

  45. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Magnetic properties at surface boundary of a half-metallic FerromagnetLa0.7sr0.3mno3. Phys. Rev. Lett. 81, 1953 (1998). https://doi.org/10.1103/physrevlett.81.1953

    Article  ADS  Google Scholar 

  46. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the cr-doped la0.7sr0.3mno3 manganites. Physica B 404, 285 (2009). https://doi.org/10.1016/j.physb.2008.10.049

    Article  ADS  Google Scholar 

  47. K. Kumari, A. Kumar, D.K. Kotnees, J. Balakrishnan, A.D. Thakur, S. Ray, Structural and resistive switching behaviour in lanthanum strontium manganite—reduced graphene oxide nanocomposite system. J. Alloy. Compd. 815, 152213 (2020). https://doi.org/10.1016/j.jallcom.2019.152213

    Article  Google Scholar 

  48. X. Zhang, X. Kan, M. Wang, R. Rao, N. Qian, G. Zheng, Y. Ma, Mechanism of enhanced magnetization in CoFe2o4/la0.7sr0.3mno3 composites with different mass ratios. Ceram. Int. 46, 14847 (2020). https://doi.org/10.1016/j.ceramint.2020.03.010

    Article  Google Scholar 

  49. E. Beyreuther, S. Grafström, L.M. Eng, C. Thiele, K. Dörr, XPS investigation of mn valence in lanthanum manganite thin films under variation of oxygen content. Phys. Rev. B 73, 155425 (2006). https://doi.org/10.1103/physrevb.73.155425

    Article  ADS  Google Scholar 

  50. R. Das, T. Sarkar, K. Mandal, Multiferroic properties of ba2+and gd3+co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J. Phys. D Appl. Phys. 45, 455002 (2012). https://doi.org/10.1088/0022-3727/45/45/455002

    Article  Google Scholar 

  51. M.T. Greiner, L. Chai, M.G. Helander, W.-M. Tang, Z.-H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv. Func. Mater. 22, 4557 (2012). https://doi.org/10.1002/adfm.201200615

    Article  Google Scholar 

  52. S. Majumder, et al., For Additional Results on Temperature-dependent resistive switching behavior of a hybrid semiconductor-oxide planar system. https://doi.org/10.1007/s00339-023-06616-y

  53. K. Komal, G. Gupta, M. Singh, B. Singh, Improved resistive switching of RGO and SnO2 based resistive memory device for non-volatile memory application. J. Alloy. Compd. 923, 166196 (2022). https://doi.org/10.1016/j.jallcom.2022.166196

    Article  Google Scholar 

  54. S.J. Hibble, S.P. Cooper, A.C. Hannon, I.D. Fawcett, M. Greenblatt, Local distortions in the colossal magnetoresistive manganates la0.70ca0.30mno3, la0.80ca0.20mno3and la0.70sr0.30mno3revealed by total neutron diffraction. J. Phys.: Condens. Matter 11, 9221 (1999). https://doi.org/10.1088/0953-8984/11/47/308

    Article  ADS  Google Scholar 

  55. R.W.G. Wyckoff, E. Posnjak, The crystal structures of the cuprous halides. J. Am. Chem. Soc. (1922). https://doi.org/10.1021/ja01422a005

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Department of Science and Technology, India through the INSPIRE scheme (Ref: DST/INSPIRE/04/2015/003087), ECR Grant (Ref: ECR/2017/002223) and CRG Grant (Ref: CRG/2019/003289). SJR sincerely acknowledges the support provided by UGC-DAE Consortium for Scientific Research (Ref: CSR-IC-263, CRS-M-321) and Indian Institute of Technology Patna. Shantanu Majumder acknowledges the financial support from UGC, India, through UGC-NET Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Ray.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Kumari, K. & Ray, S.J. Temperature-dependent resistive switching behavior of a hybrid semiconductor-oxide planar system. Appl. Phys. A 129, 357 (2023). https://doi.org/10.1007/s00339-023-06616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06616-y

Keywords

Navigation