Skip to main content
Log in

Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel cantilever enhanced photoacoustic spectrometer with mid-infrared quantum cascade laser was applied for selective and sensitive formaldehyde (CH2O) gas measurement. The spectrum of formaldehyde was measured from 1,772 to 1,777 cm−1 by tuning the laser with a spectral resolution of 0.018 cm−1. The band at 1,773.959 cm−1 was selected for data analysis, at which position the laser emitted 47 mW. In univariate measurement, the detection limit (3σ, 0.951 s) and the normalized noise equivalent absorption coefficient (3σ) for amplitude modulation (AM) were 1.6 ppbv and 7.32 × 10−10 W cm−1 (Hz)−1/2 and for wavelength modulation (WM) 1.3 ppbv and 6.04 × 10−10 W cm−1 (Hz)−1/2. In multivariate measurement, the detection limit (3σ) can be as low as 901 pptv (1,773.833–1,774.085 cm−1, 15 spectral points each 0.951 s) for AM and 623 pptv (1,773.743–1,774.265 cm−1, 30 spectral points each 0.951 s) for WM. Because measurement time increases in multivariate measurement, its application is justified only when interferents need to be resolved. Potential improvements of the system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO: formaldehyde, concise international chemical assessment document 40: Geneva (2002), http://www.inchem.org. Accessed 4 Mar 2013

  2. I.M. Ritchie, R.G. Lehnen, Am. J. Public Health 77, 323 (1987)

    Article  Google Scholar 

  3. T. Malaka, A.M. Kodama, Arch. Environ. Health 45, 288 (1990)

    Article  Google Scholar 

  4. T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev. 110, 2536 (2010)

    Article  Google Scholar 

  5. K.T. Morgan, Toxicol. Pathol. 24, 291 (1997)

    Article  Google Scholar 

  6. C. Wang, P. Sahay, Sens. Basel 9, 8230 (2009)

    Article  Google Scholar 

  7. A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G.A. Gastl, A. Amann, Int. J. Mass Spectrom. 265, 49 (2007)

    Article  ADS  Google Scholar 

  8. Finnish Institute of Occupational Health: formaldehyde: effects to health and exposure (2011), http://www.ttl.fi/fi/kemikaaliturvallisuus/ainekohtaista_kemikaalitietoa/formaldehydi/formaldehydin_terveysahaitat_ja_ltistuminen/sivut/default.aspx. Accessed 4 Mar 2013

  9. K. Wilcken, J. Kauppinen, Appl. Spectrosc. 57, 1087 (2003)

    Article  ADS  Google Scholar 

  10. J. Kauppinen, K. Wilcken, I. Kauppinen, V. Koskinen, Microchem. J. 76, 151 (2004)

    Article  Google Scholar 

  11. T. Kuusela, J. Kauppinen, Appl. Spectrosc. Rev. 42, 443 (2007)

    Article  ADS  Google Scholar 

  12. J. Fonsen, V. Koskinen, K. Roth, J. Kauppinen, Vib. Spectrosc. 50, 214 (2009)

    Article  Google Scholar 

  13. J. Kauppinen, V. Koskinen, J. Uotila, I. Kauppinen, Proc. SPIE 5617, 115 (2004)

    Article  ADS  Google Scholar 

  14. T. Kuusela, J. Peura, B.A. Matveev, M.A. Remennyy, N.M. Stus’, Vib. Spectrosc. 51, 289 (2009)

    Article  Google Scholar 

  15. A.M. Parkes, K.A. Keen, E.D. McNaghten, Proc. SPIE 6770, 67701C (2007)

    Article  ADS  Google Scholar 

  16. V. Koskinen, J. Fonsen, K. Roth, J. Kauppinen, Appl. Phys. B Lasers Opt. 86, 451 (2007)

    Article  ADS  Google Scholar 

  17. T. Laurila, H. Cattaneo, T. Pöyhönen, V. Koskinen, J. Kauppinen, R. Hernberg, Appl. Phys. B Lasers Opt. 83, 285 (2006)

    Article  ADS  Google Scholar 

  18. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, R. Hernberg, Opt. Express 13, 2453 (2005)

    Article  ADS  Google Scholar 

  19. H. Cattaneo, T. Laurila, R. Hernberg, Appl. Phys. B Lasers Opt. 85, 337 (2006)

    Article  ADS  Google Scholar 

  20. C.B. Hirschmann, J. Uotila, S. Ojala, J. Tenhunen, R.L. Keiski, Appl. Spectrosc. 64, 293 (2010)

    Article  ADS  Google Scholar 

  21. C.B. Hirschmann, N.S. Koivikko, J. Raittila, J. Tenhunen, S. Ojala, K. Rahkamaa-Tolonen, R. Marbach, S. Hirschmann, R.L. Keiski, Sens. Basel 11, 5270 (2011)

    Article  Google Scholar 

  22. J. Uotila, J. Kauppinen, Appl. Spectrosc. 62, 655 (2008)

    Article  ADS  Google Scholar 

  23. J. Uotila, Eur. Phys. J Spec. Top. 153, 401 (2008)

    Article  Google Scholar 

  24. J. Uotila, Infrared Phys. Technol. 51, 122 (2007)

    Article  ADS  Google Scholar 

  25. J. Uotila, V. Koskinen, J. Kauppinen, Vib. Spectrosc. 38, 3 (2005)

    Article  Google Scholar 

  26. I. Kauppinen, A. Branders, J. Uotila, S. Sinisalo, J. Kauppinen, T. Kuusela, Tech. Mess. 79, 17 (2012)

    Article  Google Scholar 

  27. V. Koskinen, J. Fonsen, J. Kauppinen, I. Kauppinen, Vib. Spectrosc. 42, 239 (2006)

    Article  Google Scholar 

  28. R.E. Lindley, A.M. Parkes, K.A. Keen, E.D. McNaghten, A.J. Orr-Ewing, Appl. Phys. B Lasers Opt. 86, 707 (2007)

    Article  ADS  Google Scholar 

  29. V. Koskinen, J. Fonsen, K. Roth, J. Kauppinen, Vib. Spectrosc. 48, 16 (2008)

    Article  Google Scholar 

  30. J. Uotila, Use of the Optical Cantilever Microphone in Photoacoustic Spectroscopy (University of Turku, Turku, 2009)

    Google Scholar 

  31. T. Gensty, W. Elsäßer, Opt. Commun. 256, 171 (2005)

    Article  ADS  Google Scholar 

  32. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf 110, 533 (2009)

    Article  ADS  Google Scholar 

  33. T. Iguchi, J. Opt. Soc. Am. B Opt. Phys. 3, 419 (1986)

    Article  ADS  Google Scholar 

  34. J. Saarela, J. Toivonen, A. Manninen, T. Sorvajärvi, R. Hernberg, Appl. Opt. 48, 743 (2009)

    Article  ADS  Google Scholar 

  35. R. Marbach, J. Biomed. Opt. 7, 130 (2002)

    Article  ADS  Google Scholar 

  36. R. Marbach, J. Near Infrared Spectrosc. 13, 241 (2005)

    Article  ADS  Google Scholar 

  37. R. Marbach, Pharm. Manuf. 6, 42 (2007)

    Google Scholar 

  38. R. Marbach, Pharm. Manuf. 6, 44 (2007)

    Google Scholar 

  39. M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, R.Q. Yang, Appl. Phys. B Lasers Opt. 79, 799 (2004)

    Article  ADS  Google Scholar 

  40. M. Angelmahr, A. Miklós, P. Hess, Appl. Phys. B Lasers Opt. 85, 285 (2006)

    Article  ADS  Google Scholar 

  41. A. Elia, C. Di Franco, V. Spagnolo, P.M. Lugarà, G. Scamarcio, Sens. Basel 9, 2697 (2009)

    Article  Google Scholar 

  42. J. Cihelka, I. Matulková, S. Civiš, J. Mol. Spectrosc. 256, 68 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Graduate School in Chemical Engineering, Finland and III-V lab for providing the QCL source within the CUSTOM FP7 EU project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Hirschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschmann, C.B., Lehtinen, J., Uotila, J. et al. Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source. Appl. Phys. B 111, 603–610 (2013). https://doi.org/10.1007/s00340-013-5379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5379-4

Keywords

Navigation