Skip to main content
Log in

Bacterial communities associated with hydromedusa Gonionemus vertens in different regions in Chinese coastal waters

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Bacteria communities in cnidarian jellyfish can be harmful to many important aquaculture species, as they can be key vectors of bacterial pathogens. However, our knowledge of bacterial communities associated with jellyfish in culture ponds and their potential roles in the regulation of aquaculture species remains unclear. In this study, sequencing based on the bacterial 16S rRNA gene was used to investigate the composition and variation of the bacterial communities associated with hydromedusa Gonionemus vertens in sea cucumber culture ponds and natural marine environment. The associated bacterial communities of G. vertens from the culture ponds in the Yellow Sea and Bohai Sea had significantly different compositions, when compared with those from ambient seawater environment. Furthermore, bacterial communities associated with G. vertens had similar diversity and composition in culture ponds and natural marine environment in the Yellow Sea. There were 31 unique bacterial biomarkers identified in three locations. The major communities were highly abundant in Kiloniellales, Octadecabacter, Polynucleobacter, and Polaribacter, and are related to the environmental information processing. Pathogen candidates such as Vibrionales and Chlamydiales had notably low relative abundances (<1%). The venom of the jellyfish was considered responsible for damage to the aquaculture. This study provides important data to help assess the impact of cnidarians-associated bacterial communities on pond aquaculture and the influences on material cycling and energy flow in marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Bakker C. 1980. On the distribution of ‘Gonionemus vertens’ A. Agassiz (Hydrozoa, Limnomedusae), a new species in the eelgrass beds of Lake Grevelingen (S. W. Netherlands). Hydrobiological Bulletin, 14(3): 186–195, https://doi.org/10.1007/BF02260120.

    Article  Google Scholar 

  • Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Science of the Total Environment, 692: 305–318, https://doi.org/10.1016/j.scitotenv.2019.07.155.

    Article  Google Scholar 

  • Baxter E J, McAllen R, Allcock A L, Doyle T K. 2012. Abundance, distribution and community composition of small gelatinous zooplankton in southern Irish coastal waters. Biology and Environment: Proceedings of the Royal Irish Academy, 112B(1): 91–103.

    Article  Google Scholar 

  • Bernasconi R, Stat M, Koenders A, Huggett M J. 2019a. Global networks of Symbiodinium-bacteria within the coral holobiont. Microbial Ecology, 77(3): 794–807, https://doi.org/10.1007/s00248-018-1255-4.

    Article  Google Scholar 

  • Bernasconi R, Stat M, Koenders A, Paparini A, Bunce M, Huggett M J. 2019b. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Frontiers in Microbiology, 10: 1529, https://doi.org/10.3389/fmicb.2019.01529.

    Article  Google Scholar 

  • Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A, Caporaso J G. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1): 90, https://doi.org/10.1186/s40168-018-0470-z.

    Article  Google Scholar 

  • Bosch-Belmar M, Milisenda G, Girons A, Taurisano V, Accoroni S, Totti C, Piraino S, Fuentes V. 2017. Consequences of stinging plankton blooms on finfish mariculture in the Mediterranean Sea. Frontiers in Marine Science, 4: 240, https://doi.org/10.3389/fmars.2017.00240.

    Article  Google Scholar 

  • Byler K A, Carmi-Veal M, Fine M, Goulet T L. 2013. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One, 8(3): e59596, https://doi.org/10.1371/journal.pone.0059596.

    Article  Google Scholar 

  • Carman M R, Grunden D W, Govindarajan A F. 2017. Species-specific crab predation on the hydrozoan clinging jellyfish Gonionemus sp. (Cnidaria, Hydrozoa), subsequent crab mortality, and possible ecological consequences. PeerJ, 5: e3966, https://doi.org/10.7717/peerj.3966.

    Article  Google Scholar 

  • Cleary D F R, Becking L E, De Voogd N J, Pires A C C, Polónia A R M, Egas C, Gomes N C M. 2013. Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiology Ecology, 85(3): 465–482.

    Article  Google Scholar 

  • Cleary D F R, Becking L E, Polónia A R M, Freitas R M, Gomes N C M. 2016. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes. FEMS Microbiology Ecology, 92(5): fiw064, https://doi.org/10.1093/femsec/fiw064.

    Article  Google Scholar 

  • Clinton M, Kintner A H, Delannoy C M J, Brierley A S, Ferrier D E K. 2020. Molecular identification of potential aquaculture pathogens adherent to cnidarian zooplankton. Aquaculture, 518: 734801.

    Article  Google Scholar 

  • Cortés-Lara S, Urdiain M, Mora-Ruiz M, Prieto L, Rosselló-Móra R. 2015. Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata. Systematic and Applied Microbiology, 38(7): 494–500.

    Article  Google Scholar 

  • Daley M C, Urban-Rich J, Moisander P H. 2016. Bacterial associations with the hydromedusa Nemopsis bachei and scyphomedusa Aurelia aurita from the North Atlantic Ocean. Marine Biology Research, 12(10): 1088–1100.

    Article  Google Scholar 

  • Daniels C, Breitbart M. 2012. Bacterial communities associated with the ctenophores Mnemiopsis leidyi and Beroe ovate. FEMS Microbiology Ecology, 82(1): 90–101.

    Article  Google Scholar 

  • Delannoy C M J, Houghton J D R, Fleming N E C, Ferguson H W. 2011. Mauve stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture, 311(1–4): 255–257.

    Article  Google Scholar 

  • Ferguson H W, Christian M J D, Hay S, Nicolson J, Sutherland D, Crumlish M. 2010. Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar). Journal of Veterinary Diagnostic Investigation, 22(3): 376–382.

    Article  Google Scholar 

  • Fodelianakis S, Papageorgiou N, Pitta P, Kasapidis P, Karakassis I, Ladoukakis E D. 2014. The pattern of change in the abundances of specific bacterioplankton groups is consistent across different nutrient-enriched habitats in Crete. Applied and Environmental Microbiology, 80(13): 3784–3792.

    Article  Google Scholar 

  • Fringuelli E, Savage P D, Gordon A, Baxter E J, Rodger H D, Graham D A. 2012. Development of a quantitative realtime PCR for the detection of Tenacibaculum maritimum and its application to field samples. Journal of Fish Diseases, 35(8): 579–590.

    Article  Google Scholar 

  • Gallardo B, Clavero M, Sánchez M I, Vilà M. 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22(1): 151–163.

    Article  Google Scholar 

  • Gaynor J J, Bologna P A X, Restaino D, Barry C L. 2016. First occurrence of the invasive hydrozoan Gonionemus vertens A. Agassiz, 1862 (Cnidaria: Hydrozoa) in New Jersey, USA. BioInvasions Records, 5(4): 233–237.

    Article  Google Scholar 

  • Gerpe D, Buján N, Diéguez A L, Lasa A, Romalde J L. 2017. Kiloniella majae sp. nov., isolated from spider crab (Maja brachydactyla) and pullet carpet shell clam (Venerupis pullastra). Systematic and Applied Microbiology, 40(5): 274–279.

    Article  Google Scholar 

  • Gong L X, Wang H N, Wang T X, Liu Y L, Wang J, Sun B G. 2019. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. Journal of Functional Foods, 60: 103453.

    Article  Google Scholar 

  • Govindarajan A F, Carman M R, Khaidarov M R, Semenchenko A, Wares J P. 2017. Mitochondrial diversity in Gonionemus (Trachylina: Hydrozoa) and its implications for understanding the origins of clinging jellyfish in the Northwest Atlantic Ocean. PeerJ, 5: e3205.

    Article  Google Scholar 

  • Govindarajan A F, Carman M R. 2016. Possible cryptic invasion of the Western Pacific toxic population of the hydromedusa Gonionemus vertens (Cnidaria: Hydrozoa) in the Northwestern Atlantic Ocean. Biological Invasions, 18(2): 463–469.

    Article  Google Scholar 

  • Govindarajan A F, Källström B, Selander E, Östman C, Dahlgren T G. 2019. The highly toxic and cryptogenic clinging jellyfish Gonionemus sp. (Hydrozoa, Limnomedusae) on the Swedish west coast. PeerJ, 7: e6883.

    Article  Google Scholar 

  • Hao W J, Gerdts G, Peplies J, Wichels A. 2015. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea). FEMS Microbiology Ecology, 91(1): 1–11.

    Article  Google Scholar 

  • Jang H, Yang S H, Seo H S, Lee J H, Kim S J, Kwon K K. 2015. Amphritea spongicola sp. nov., isolated from a marine sponge, and emended description of the genus Amphritea. International Journal of Systematic and Evolutionary Microbiology, 65(Pt6): 1866–1870.

    Article  Google Scholar 

  • Jaspers C, Weiland-Bräuer N, Rühlemann M C, Baines J F, Schmitz R A, Reusch T B H. 2020. Differences in the microbiota of native and non-indigenous gelatinous zooplankton organisms in a low saline environment. Science of the Total Environment, 734: 139471.

    Article  Google Scholar 

  • Langille M G I, Zaneveld J, Caporaso J G, Mcdonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Thurber R L V, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16s RRNA marker gene sequences. Nature Biotechnology, 31(9): 814–821.

    Article  Google Scholar 

  • Lee M D, Kling J D, Araya R, Ceh J. 2018. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Frontiers in Microbiology, 9: 1534.

    Article  Google Scholar 

  • Lee O O, Wang Y, Yang J K, Lafi F F, Al-Suwailem A, Qian P Y. 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal, 5(4): 650–664.

    Article  Google Scholar 

  • Lindh M V, Riemann L, Baltar F, Romero-Oliva C, Salomon P S, Granéli E, Pinhassi J. 2013. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Environmental Microbiology Reports, 5(2): 252–262.

    Article  Google Scholar 

  • Marchessaux G, Gadreaud J, Martin-Garin B, Thiéry A, Ourgaud M, Belloni B, Thibault D. 2017. First report of the invasive jellyfish Gonionemus vertens A. Agassiz, 1862 in the Berre Lagoon, southeast France. Bioinvasions Records, 6(4): 339–344.

    Article  Google Scholar 

  • Mariottini G L, Giacco E, Pane L. 2008. The mauve stinger Pelagia noctiluca (Forsskål, 1775). Distribution, ecology, toxicity and epidemiology of stings. Marine Drugs, 6(3): 496–513.

    Google Scholar 

  • Martiny J B H, Bohannan B J M, Brown J H, Colwell R K, Fuhrman J A, Green J L, Horner-Devine M C, Kane M, Krumins J A, Kuske C R, Morin P J, Naeem S, Øvreås L, Reysenbach A L, Smith V H, Staley J T. 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 4(2): 102–112.

    Article  Google Scholar 

  • Pyšek P, Richardson D M. 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35: 25–55.

    Article  Google Scholar 

  • Rodriguez C S, Pujol M G, Mianzan H W, Genzano G N. 2014. First record of the invasive stinging medusa Gonionemus vertens in the southern hemisphere (Mar del Plata, Argentina). Latin American Journal of Aquatic Research, 42(3): 653–657.

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N. 2002. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243: 1–10.

    Article  Google Scholar 

  • Ruiz G M, Fofonoff P W, Carlton J T, Wonham M J, Hines A H. 2000. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics, 31: 481–531.

    Article  Google Scholar 

  • Russell S L, Corbett-Detig R B, Cavanaugh C M. 2017. Mixed transmission modes and dynamic genome evolution in an obligate animal-bacterial symbiosis. The ISME Journal, 11(6): 1359–1371.

    Article  Google Scholar 

  • Schuchert P. 2016. Gonionemus vertens A. Agassiz, 1862. In: Schuchert P ed. World Hydrozoa Database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/phia.php?p=taxdetails&id=117768 on 2016-10-25.

  • Schuett C, Doepke H. 2010. Endobiotic bacteria and their pathogenic potential in cnidarian tentacles. Helgoland Marine Research, 64(3): 205–212.

    Article  Google Scholar 

  • Si O J, Yang H Y, Hwang C Y, Kim S J, Choi S B, Kim J G, Jung M Y, Kim S G, Roh S W, Rhee S K. 2017. Kiloniella antarctica sp. nov., isolated from a polynya of Amundsen Sea in Western Antarctic Sea. International Journal of Systematic and Evolutionary Microbiology, 67(7): 2397–2402.

    Article  Google Scholar 

  • Småge S B, Brevik Ø J, Frisch K, Watanabe K, Duesund H, Nylund A. 2018. Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms. PLoS One, 12(11): e0187476.

    Article  Google Scholar 

  • Taylor M W, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71(2): 295–347.

    Article  Google Scholar 

  • Tinta T, Kogovšek T, Klun K, Malej A, Herndl G J, Turk V 2019. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential. Marine Drugs, 17(2): 94.

    Article  Google Scholar 

  • Toranzo A E, Magariños B, Romalde J L. 2005. A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(1–4): 37–61.

    Article  Google Scholar 

  • Viver T, Orellana L H, Hatt J K, Urdiain M, Díaz S, Richter M, Antón J, Avian M, Amann R, Konstantinidis K T, Rosselló-Móra R. 2017. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environmental Microbiology, 19(8): 3039–3058.

    Article  Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. 2012. The Second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in Microbiology, 3: 292.

    Article  Google Scholar 

  • Walsh E A, Kirkpatrick J B, Rutherford S D, Smith D C, Sogin M, D’Hondt S. 2016. Bacterial diversity and community composition from seasurface to subseafloor. The ISME Journal, 10(4): 979–989.

    Article  Google Scholar 

  • Wang K, Ye X S, Chen H P, Zhao Q F, Hu C J, He J Y, Qian Y X, Xiong J B, Zhu J L, Zhang D M. 2015a. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients. Environmental Microbiology, 17(10): 3898–3913.

    Article  Google Scholar 

  • Wang L P, Li X Y, Shao Z Z. 2015b. Draft genome sequence of the denitrifying strain Kiloniella sp. P1–1 isolated from the gut microflora of Pacific white shrimp, Litopenaeus vannamei. Marine Genomics, 24: 261–263.

    Article  Google Scholar 

  • Webster G, O’Sullivan L A, Meng Y Y, Williams A S, Sass A M, Watkins A J, Parkes R J, Weightman A J. 2015. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiology Ecology, 91(2): 1–18.

    Article  Google Scholar 

  • Webster N S, Taylor M W, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 12(8): 2070–2082, https://doi.org/10.1111/j.1462-2920.2009.02065.x.

    Google Scholar 

  • Wei G S, Li M C, Li F E, Li H, Gao Z. 2016. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology, 100(22): 9683–9697.

    Article  Google Scholar 

  • Weiland-Bräuer N, Neulinger S C, Pinnow N, Künzel N, Künzel S, Baines J F, Schmitz R A. 2015. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Applied and Environmental Microbiology, 81(17): 6038–6052.

    Article  Google Scholar 

  • Wiese J, Thiel V, Gärtner A, Schmaljohann R, Imhoff J F. 2009. Kiloniella laminariae gen. nov., sp. nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 2): 350–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Dong.

Additional information

Supported by the National Key Research and Development Program of China (No. 2018YFC1406501), the National Natural Science Foundation of China (Nos. U2106208, 42003064, 41876138), the Key Research and Development Program of Yantai (No. 2020MSGY056), and the Shandong Key Laboratory of Marine Ecological Restoration (No. 201921)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Wang, L., Li, F. et al. Bacterial communities associated with hydromedusa Gonionemus vertens in different regions in Chinese coastal waters. J. Ocean. Limnol. 40, 1530–1543 (2022). https://doi.org/10.1007/s00343-021-1036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1036-7

Keyword

Navigation