Skip to main content
Log in

Image guidance for focal therapy of prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Focal therapy is an appealing strategy for any tumor and in time may prove to be a valuable treatment option for low-risk, carefully selected prostate cancer (PCa) patients. In an era where active surveillance is now considered a viable option for low-risk PCa patients, it is conceivable that organ-sparing treatments could also become an established option. The aim of focal therapy is to achieve long-term cancer control with minimal morbidity yet without the side effects of radical therapy. Although lacking in evidence, it remains intuitive that if we treat the smallest possible region of the prostate where to ensure cancer control by ablation (laser, cryotherapy or another ablative source), then there is less potential for untoward side effects. Thus, we believe the ultimate goal in focal therapy is to target specifically the cancerous site while ablating it and the smallest zone of normal prostate tissue around it to obtain cancer control. To achieve this goal, one is dependent on high-quality imaging to: locate the cancerous lesion and have it assist in guiding the ablative modality toward the lesion; monitor the ablation in real time; accurately assess the extent and totality of the ablation post-treatment and finally be used to follow-up and monitor the prostate in search of a recurrence of cancer in the treated area or the development ion new zones. This review seeks to discuss such issues focusing on imaging modalities as they relate to focal therapy of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Bill-Axelson A et al (2008) Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J Natl Cancer Inst 100:1144–1154

    Article  PubMed  Google Scholar 

  3. Johansson JE et al (2004) Natural history of early, localized prostate cancer. JAMA 291:2713–2719

    Article  CAS  PubMed  Google Scholar 

  4. Schroder FH et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360:1320–1328

    Article  PubMed  Google Scholar 

  5. Welch HG, Albertsen PC (2009) Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst

  6. Shao YH et al (2009) Contemporary risk profile of prostate cancer in the United States. J Natl Cancer Inst 101:1280–1283

    Article  PubMed  Google Scholar 

  7. Cooperberg MR, Broering JM, Kantoff PW, Carroll PR (2007) Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol 178:S14–S19

    Article  PubMed  Google Scholar 

  8. Klotz L et al (2010) Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol 28:126–131

    Article  PubMed  Google Scholar 

  9. Wexner SD et al (2009) The current status of robotic pelvic surgery: results of a multinational interdisciplinary consensus conference. Surg Endosc 23:438–443

    Article  PubMed  Google Scholar 

  10. Sanda MG et al (2008) Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 358:1250–1261

    Article  CAS  PubMed  Google Scholar 

  11. Veronesi U et al (1995) Breast conservation is a safe method in patients with small cancer of the breast. Long-term results of three randomised trials on 1,973 patients. Eur J Cancer 31A:1574–1579

    Article  CAS  PubMed  Google Scholar 

  12. Kutikov A, Kunkle DA, Uzzo RG (2009) Focal therapy for kidney cancer: a systematic review. Curr Opin Urol 19:148–153

    Article  PubMed  Google Scholar 

  13. Onik G, Narayan P, Vaughan D, Dineen M, Brunelle R (2002) Focal “nerve-sparing” cryosurgery for treatment of primary prostate cancer: a new approach to preserving potency. Urology 60:109–114

    Article  PubMed  Google Scholar 

  14. Lindner U et al (2010) Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol (in press)

  15. Lindner U et al (2009) Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol 182:1371–1377

    Article  CAS  PubMed  Google Scholar 

  16. Barzell WE, Melamed MR (2007) Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate-a 4-year experience. Urology 70:27–35

    Article  PubMed  Google Scholar 

  17. Ward JF, Nakanishi H, Pisters L, Babaian RJ, Troncoso P (2009) Cancer ablation with regional templates applied to prostatectomy specimens from men who were eligible for focal therapy. BJU Int 104:490–497

    Article  PubMed  Google Scholar 

  18. Watanabe H, Igari D, Tanahashi Y, Harada K, Saitoh M (1975) Transrectal ultrasonotomography of the prostate. J Urol 114:734–739

    CAS  PubMed  Google Scholar 

  19. Toi A et al (2007) The continuing importance of transrectal ultrasound identification of prostatic lesions. J Urol 177:516–520

    Article  PubMed  Google Scholar 

  20. Oyen RH et al (1993) Benign hyperplastic nodules that originate in the peripheral zone of the prostate gland. Radiology 189:707–711

    CAS  PubMed  Google Scholar 

  21. Shinohara K, Scardino PT, Carter SS, Wheeler TM (1989) Pathologic basis of the sonographic appearance of the normal and malignant prostate. Urol Clin North Am 16:675–691

    CAS  PubMed  Google Scholar 

  22. Onur R, Littrup PJ, Pontes JE, Bianco FJ Jr (2004) Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J Urol 172:512–514

    Article  PubMed  Google Scholar 

  23. Ellis DS, Manny TB Jr, Rewcastle JC (2007) Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology 70:9–15

    Article  PubMed  Google Scholar 

  24. Lambert EH, Bolte K, Masson P, Katz AE (2007) Focal cryosurgery: encouraging health outcomes for unifocal prostate cancer. Urology 69:1117–1120

    Article  PubMed  Google Scholar 

  25. Onik G, Vaughan D, Lotenfoe R, Dineen M, Brady J (2007) “Male lumpectomy”: focal therapy for prostate cancer using cryoablation. Urology 70:16–21

    Article  PubMed  Google Scholar 

  26. Bahn DK et al (2006) Focal prostate cryoablation: initial results show cancer control and potency preservation. J Endourol 20:688–692

    Article  PubMed  Google Scholar 

  27. Gowardhan B, Greene D (2007) Cryotherapy for the prostate: an in vitro and clinical study of two new developments; advanced cryoneedles and a temperature monitoring system. BJU Int 100:295–302

    Article  PubMed  Google Scholar 

  28. Steed J, Saliken JC, Donnelly BJ, Ali-Ridha NH (1997) Correlation between thermosensor temperature and transrectal ultrasonography during prostate cryoablation. Can Assoc Radiol J 48:186–190

    CAS  PubMed  Google Scholar 

  29. Zlotta AR et al (1998) Percutaneous transperineal radiofrequency ablation of prostate tumour: safety, feasibility and pathological effects on human prostate cancer. Br J Urol 81:265–275

    CAS  PubMed  Google Scholar 

  30. Shigeno K, Igawa M, Shiina H, Wada H, Yoneda T (2000) The role of colour Doppler ultrasonography in detecting prostate cancer. BJU Int 86:229–233

    Article  CAS  PubMed  Google Scholar 

  31. Newman JS, Bree RL, Rubin JM (1995) Prostate cancer: diagnosis with color Doppler sonography with histologic correlation of each biopsy site. Radiology 195:86–90

    CAS  PubMed  Google Scholar 

  32. Arger PH et al (2004) Color and power Doppler sonography in the diagnosis of prostate cancer: comparison between vascular density and total vascularity. J Ultrasound Med 23:623–630

    PubMed  Google Scholar 

  33. Halpern EJ, Strup SE (2000) Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol 174:623–627

    CAS  PubMed  Google Scholar 

  34. Burns PN, Wilson SR (2006) Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q 22:5–13

    PubMed  Google Scholar 

  35. Halpern EJ et al (2000) Initial experience with contrast-enhanced sonography of the prostate. AJR Am J Roentgenol 174:1575–1580

    CAS  PubMed  Google Scholar 

  36. Wilson SR, Greenbaum LD, Goldberg BB (2009) Contrast-enhanced ultrasound: what is the evidence and what are the obstacles? AJR Am J Roentgenol 193:55–60

    Article  PubMed  Google Scholar 

  37. Moriyasu F, Itoh K (2009) Efficacy of perflubutane microbubble-enhanced ultrasound in the characterization and detection of focal liver lesions: phase 3 multicenter clinical trial. AJR Am J Roentgenol 193:86–95

    Article  PubMed  Google Scholar 

  38. Piscaglia F, Bolondi L (2006) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32:1369–1375

    Article  PubMed  Google Scholar 

  39. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm110260.htm. (2010)

  40. Mitterberger M et al (2007) A prospective randomized trial comparing contrast-enhanced targeted versus systematic ultrasound guided biopsies: impact on prostate cancer detection. Prostate 67:1537–1542

    Article  PubMed  Google Scholar 

  41. Wink M et al (2008) Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur Urol 54:982–992

    Article  PubMed  Google Scholar 

  42. Mitterberger M et al (2010) Contrast-enhanced colour Doppler-targeted prostate biopsy: correlation of a subjective blood-flow rating scale with the histopathological outcome of the biopsy. BJU Int 106(9):1315–1318

    Google Scholar 

  43. Hu B, Chen L, Li J, Huang J (2010) Contrast-enhanced ultrasonography evaluation of radiofrequency ablation of the prostate: a canine model. J Endourol 24:89–93

    Google Scholar 

  44. Atri M, Gertner MR, Haider MA, Weersink RA, Trachtenberg J (2009) Contrast-enhanced ultrasonography for real-time monitoring of interstitial laser thermal therapy in the focal treatment of prostate cancer. Can Urol Assoc J 3:125–130

    PubMed  Google Scholar 

  45. Hoyt K et al (2008) Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark 4:213–225

    PubMed  Google Scholar 

  46. Konig K et al (2005) Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 174:115–117

    Article  PubMed  Google Scholar 

  47. Pallwein L et al (2007) Real-time elastography for detecting prostate cancer: preliminary experience. BJU Int 100:42–46

    Article  PubMed  Google Scholar 

  48. Miyagawa T et al (2009) Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Jpn J Clin Oncol 39:394–398

    Article  PubMed  Google Scholar 

  49. Sumura M et al (2007) Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int J Urol 14:811–816

    Article  PubMed  Google Scholar 

  50. Righetti R et al (1999) Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound Med Biol 25:1099–1113

    Article  CAS  PubMed  Google Scholar 

  51. Varghese T et al (2003) Elastographic measurement of the area and volume of thermal lesions resulting from radiofrequency ablation: pathologic correlation. AJR Am J Roentgenol 181:701–707

    PubMed  Google Scholar 

  52. Steyn JH, Smith FW (1982) Nuclear magnetic resonance imaging of the prostate. Br J Urol 54:726–728

    Article  CAS  PubMed  Google Scholar 

  53. Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174; discussion 1175

    Google Scholar 

  54. Engelbrecht MR et al (2002) Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 12:2294–2302

    PubMed  Google Scholar 

  55. Wefer AE et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404

    Article  CAS  PubMed  Google Scholar 

  56. Kitajima K et al (2010) Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging 31:625–631

    Google Scholar 

  57. Turkbey B et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 255:89–99

    Google Scholar 

  58. Haider MA et al (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328

    Article  PubMed  Google Scholar 

  59. Muto S et al (2008) Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn J Clin Oncol 38:192–199

    Article  PubMed  Google Scholar 

  60. Jager GJ et al (1996) Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol 166:845–852

    CAS  PubMed  Google Scholar 

  61. Mazaheri Y et al (2009) Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 252:449–457

    Article  PubMed  Google Scholar 

  62. Nakashima J et al (2004) Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 64:101–105

    Article  PubMed  Google Scholar 

  63. Groenendaal G et al (2010) Validation of functional imaging with pathology for tumor delineation in the prostate. Radiother Oncol 94:145–150

    Google Scholar 

  64. Hambrock T et al (2010) Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol 183:520–527

    Google Scholar 

  65. Raz O et al (2010) Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 58:173–177

    Article  PubMed  Google Scholar 

  66. Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291

    Article  PubMed  Google Scholar 

  67. Chen JC et al (2000) Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214:290–297

    CAS  PubMed  Google Scholar 

  68. Chopra R et al (2009) Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback. Phys Med Biol 54:2615–2633

    Article  PubMed  Google Scholar 

  69. Wust P, Cho CH, Hildebrandt B, Gellermann J (2006) Thermal monitoring: invasive, minimal-invasive and non-invasive approaches. Int J Hyperth 22:255–262

    Article  Google Scholar 

  70. Djavan B et al (1997) Transperineal radiofrequency interstitial tumor ablation of the prostate: correlation of magnetic resonance imaging with histopathologic examination. Urology 50:986–992; discussion 992–993

    Google Scholar 

  71. Larson BT et al (2003) Gadolinium-enhanced MRI in the evaluation of minimally invasive treatments of the prostate: correlation with histopathologic findings. Urology 62:900–904

    Article  PubMed  Google Scholar 

  72. Lindner U et al (2010) Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol 57:1111–1114

    Article  PubMed  Google Scholar 

  73. Hu Y et al (2009) MR to ultrasound image registration for guiding prostate biopsy and interventions. Med Image Comput Comput Assist Interv 12:787–794

    PubMed  Google Scholar 

  74. Reynier C et al (2004) MRI/TRUS data fusion for prostate brachytherapy. Preliminary results. Med Phys 31:1568–1575

    Article  PubMed  Google Scholar 

  75. Singh AK et al (2008) Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int 101:841–845

    Article  PubMed  Google Scholar 

  76. Xu S et al (2007) Closed-loop control in fused MR-TRUS image-guided prostate biopsy. Med Image Comput Comput Assist Interv 10:128–135

    PubMed  Google Scholar 

  77. Xu S et al (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg 13:255–264

    PubMed  Google Scholar 

  78. Zhang B, Arola DD, Roys S, Gullapalli RP (2010) Three-dimensional elastic image registration based on strain energy minimization: application to prostate magnetic resonance imaging. J Digit Imaging [Epub ahead of print]

  79. Rosenkrantz AB et al (2010) Prostate cancer: comparison of 3D T2-weighted with conventional 2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol 194:446–452

    Google Scholar 

  80. Eggener SE et al (2007) Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J Urol 178:2260–2267

    Article  PubMed  Google Scholar 

  81. Ward JF, Jones JS (2010) Classification system: organ preserving treatment for prostate cancer. Urology 75:1258–1260

    Google Scholar 

Download references

Acknowledgments

We acknowledge Janice Yau of the University of Toronto, Biomedical Communications department for providing the artwork for Fig. 1.

Conflict of interest

The authors declare that they are investigators in clinical trials of focal ablation to treat prostate cancer. No other potential conflict of interest relevant to this article exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, U., Lawrentschuk, N. & Trachtenberg, J. Image guidance for focal therapy of prostate cancer. World J Urol 28, 727–734 (2010). https://doi.org/10.1007/s00345-010-0604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-010-0604-9

Keywords

Navigation